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Abstract

Properties of advanced composite materials are governed by the interaction of the 
constituents on various length scales. Hierarchical modeling concepts for constitutive 
descriptions and structural analyses are presented by means of examples.
For perforated laminates the overall stiffness and the first ply failure strength is 
predicted by a unit cell type approach. An integrated tool consisting of a pre-
processor, a commercial FEM-solver, and a post-processor is developed. The 
configuration of the holes as well as the effect of their free surfaces is evaluated. In a 
further step, the obtained material data are used for structural analyses of components 
containing such perforated laminates.
Tools for first ply failure predictions under combined load scenarios are developed. 
Various load cases are classified as being either constant or variable, giving more 
detailed information on the risk for failure. The use of Puck's criterion allows the 
prediction of the failure mode additionally. The tool is hooked up to a commercial 
FEM-package as a post-processing routine, to perform structural analyses and failure 
predictions of complex shaped and loaded components.
A modeling concept for the prediction of progressive damage is developed. For the 
onset of damage the previous failure models are adapted accordingly. The damage 
evolution and the stiffness degradation are described by forth order tensors based on 
continuum damage mechanics. The model is implemented as a constitutive material 
law on ply level. It is general in conception, allowing for damage evolution for various 
causes, such as monotonic quasi-static loading, fatigue loading, etc. 
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SHORT INTRODUCTION TO THE  ILSB
Scientific staff 
– 2 professors + 2 associates + 4 assistants funded by university,

approx. 6 researches funded externally

Research fields 
– lightweight structures, computational methods, micromechanics of

materials, biomechanics, aerospace engineering

Emphasis on cooperation with industrial and international 
partners
– projects with industry
– EU programs
– Austrian programs (e.g. CDL)
– Austrian Aeronautics Research - competence network



MATERIALS-RELATED RESEARCH FIELDS
development and application of continuum mechanics models 
for lightweight structures and advanced materials

models’ length scales span from size of constituents in 
inhomogeneous materials to structural level
– hierarchical models (micro-meso-macro approach)
– advanced materials – composites, cellular materials, graded 

materials
– nonlinear behavior – stiffness, strength, damage, conductivity, …

computational simulation tools
– numerical – Finite Element Method
– (semi)analytical models are used where possible

testing of biomaterials (micro- and nanomechanics)
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Modeling scales
structure

laminate

single ply

fibers

macro
scale

micro
scale

meso
scale

[Lee et al, 1999][Yousefpour et al, 2004]

[Lafarie-Frenot
et al, 2001]



Scope

Modeling on ply level 
– local ply-coordinate system
– effective ply material

(transversally isotropic)
– no micro–stress fields, 

micro-damage,
etc.

but: application on macro-level by lamination 
theory and/or implementation in FEM



First Ply Failure (FPF)

Linear material behavior
“Laminate failure if stress in one layer 
reaches stress limit”
– determine layer stresses

(analytically, numerically)
– define “stress limit” → FPF-criteria
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Implementation:

Modular structure
» easy extension to various failure criteria

2D and 3D stress states
4 risk parameters
Failure mode
Fracture plane angle (when available) 
Combination with FEM-program



Example Problem

Pressure vessel geometry

Layup: 
symmetric angle ply
[+γ/-γ]s; γ=19.5°… 90°

Material: AS4/3501-6 
carbon/epoxy

+ 90º reinforcement
in cylinder section



Example Problem

distributed 
load
distributed 
load
distributed 
load

Pressure vessel 
loads & modeling 

∆T=-75°C

pi =1MPa

3D submodel

shell model



Example Problem - Results

residual stress →const. risk parameter

λc ≈ 2.5

λc ≈ 2.1



Example Problem - Results

residual stress →const. risk parameter

λc ≈ 2.4



Example Problem - Results

λ ≈ 5.0

combined stresses →risk parameter
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HIERARCHICAL MODEL
Blockerdoor



HIERARCHICAL MODEL

Predicted stress distributions in 
acoustic laminate: free edge effect

UC-model to derive homogenized 
material behavior

global FEM-analysis



Laminate Failure Surface

HIERARCHICAL MODEL



HIERARCHICAL MODEL



HIERARCHICAL MODEL

Comparison: FE-Computations - Test 

risk of failure



HIERARCHICAL MODEL

Additional results to standard FE are: 
– Risk parameter of perforated regions
– Failure modes of perforated regions
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Motivation
Failure analysis
– First Ply Failure
– linear elastic

Actual material 
behavior
– non-linear 

due to damage
– high margin to 

ultimate failure 

→ damage modeling
displacement

lo
ad

FPF

ultimate 
failure



Ply material behavior
effect of damage dependent on stress state

tension / shear
open transverse crack

compression / shear

fracture plane angle 0 - 53°
additionally friction
→ ‘stiffness recovery’



Continuum damage modeling
uniaxial tension: layer with multiple cracks

σ

equivalent

effective material

σ
0

2 2 2(1 )dE E d= −
d2 … damage variable



Continuum damage modeling
Simple model 
based on experimental curve fits

0
2 2 2(1 )dE E d= −
σ22

interaction?

0
12 12 12(1 )dG G d= −
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Continuum damage modeling

In general

… elasticity tensors
… 4th order damage tensor
… tensorial function

0 ( )d =E E F D
0,dE E

1 2( , ,..., )nd d d=D D
( )F D

( )init =F D I



Model objectives

thermodynamically consistent
physically realistic
concept that can capture 
– inclined cracks
– closed cracks (stiffness recovery)
– (3-axial stress states → delamination)

few parameters



Problem definition
choice of damage 
variable(s)
definition of “load”

damage evolution law
influence of damage 
on stiffness

E
stiffness

D
damage

L
load

? ?
damage 

evolution?
damage 

influence?

interaction with other laminate layers
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(0/90)s Laminate – uniaxial tension

starting damage
90° layers

starting damage
0° layers

fiber failure 0° layers

εxxεyy



(±45)s Laminate – uniaxial tension

starting damage

εxxεyy



Model capabilities

• Arbitrary loading paths
• Constitutive law for FEM
• Evolution law for fatigue

• Structural analysis of components



Summary

modeling of the material behavior
– FPF
– progressive damage

… utilized for structural analyses
– hierarchical modeling

improved stress analysis 
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