

2020 Vision of Engineering Analysis and Simulation October 29 - 31, 2008 | Hampton, Virginia

Issues Facing Engineering Simulation: A CAE Providers Perspective

Dave Conover ANSYS, Inc.

- Customer drivers
- Technology enablers
- CAE directions and issues

Customer Drivers

Upfront analysis

Upfront Analysis

• Simulation-Driven Product Development (SDPD)

Use simulation to impact design early on when design changes are relatively inexpensive

Variability

Design of experiments (DOE)Design for six sigma (DFSS)

Simulation allows for quick "what if" iterations and to understand the design space and build in robustness

System Simulation

• Entire assemblies

Optimize the whole product, not each component individually and remove assumptions on part interactions

System Simulation

Mechatronics: simulate the entire system behavior

Model Fidelity

- Hot spots
- Geometry defeaturing

Where will fatigue failure occur?

Minimize engineer's time in creating the mesh

Multiple Physics

• Include all relevant physics

Electric-thermal-structural

Fluid-structure interaction

Technology Enablers

- Ubiquitous 64-bit computing
- Multi-core
- Algorithmic advances

Ubiquitous 64-bit Computing

Fluent Downloads

The engineers desktop is quickly migrating to 64-bit!

→ 64-bit means 8, 16, 32 GB memory on the desktop

Multi-Core

- 10s to 100s of cores coming on the desktop
- 80-core chip in research stage
- ...GPU's as "multi-cores" too!

Multi-Core Trends (Home/Business PCs) http://www.pcpitstop.com/research/

Algorithmic Advances

- Parallel Programming
 - Shared memory (OpenMP)
 - Distributed memory, e.g. clusters (MPI)
- Sparse solvers

- Left-/right-/combined-looking supernode techniques
- Dynamic balancing
- Hybrid parallelism
- Iterative solvers
 - Scalable domain decomposition methods

CAE Directions and Issues

- Embrace large memory
- Pervasive parallelization
- Reduced order modeling

Embrace Large Memory

- What can we do with gigabytes of memory?
 - In-core algorithms, e.g. sparse solver
 - Use it to buffer I/O

Time and I/O Rate Versus Memory

Embrace Large Memory

- Issues
 - Memory bus speeds lagging "can't feed the cores fast enough"
 - Cache-friendly algorithms
 - Multi-core memory affinity

Pervasive Parallelization

- Everything must be parallel!
- Issues
 - Algorithmic
 - Multi-core

Amdahl's Law

Speedup = $\frac{1}{F + (1 - F)/N}$

If only 10% of the code remains serial, the most speedup you can get is a factor of 10!

Algorithmic Issues

- Everything can't be parallel...
- Equation solver issues
 - Global constraints (MPC's)
 - Lagrange Multipliers

These cause scalability problems due to their global nature!: G^TKG

Algorithmic Issues

Equation solver issues (cont)

- Global constraints (MPC's)

The number of MPCs can be on the order of magnitude of the number of elements!

Multi-Core Issues

Just when we were mastering clusters...

I/O not scalable

Effective I/O Rate and Elapsed Time Versus Number of Cores

use large memory to

Multi-Core Issues

 Multi-core architecture not perfectly scalable

Speedup for Concurrent Processes (no communation and non-blocking)

Reduced Order Modeling

- Emerging area for dealing with large models and system models
- Techniques
 - Substructuring/superelements (SE) for statics and Component Mode Synthesis (CMS) for dynamics
 - Automated Multi-Level Substructuring (AMLS) for modal and harmonic (frequency) regime
 - Variational Technology (VT) for automated ROM

Traditional CMS/SE

• CMS (Superelements) traditionally used for reduced-order modeling

Matrix reduction is expensive – CPU and disk space

 Automatic division of a model into 1000s of CMS substructures (or supernodes)

Variational Technology (VT)

 Build subspace (Krylov vectors) on the fly during a transient or nonlinear analysis

Thermal transient

VT

Relative Speedup for 1 Parameter Change

> Used to quickly find solutions due to parameter changes

Time for Multiple DOE Parameter Changes

Future CAE Challenges

- Effective use of 1000's of cores in a single box: code parallelization, memory, I/O
- Robust and scalable solvers for the multi-core environment (for implicit structural FEA codes)
- Handling of the immense amount of data (spatially and temporally) being produced

Solver scalability of our CFD brethren

Thank You!

• Questions?

Dave Conover ANSYS, Inc.

