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Isogeometric Analysis

• Based on technologies (e.g., NURBS) from computational
geometry used in:

– Design

– Animation

– Graphic art

– Visualization

• Includes standard FEA as a special case, but offers other
possibilities:

– Precise and efficient geometric modeling

– Simplified mesh refinement

– Smooth basis functions with compact support

– Superior approximation properties

– Integration of design and analysis



NURBS



Isogeometric Analysis
(NURBS, T-Splines, etc.)

FEA

h-, p-refinement

k-refinement



B-Splines

B-spline Basis Functions
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B-spline basis functions

of order 0, 1, 2 for a

uniform knot vector:

    ! = {0,1,2,3,4,…}
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Quadratic (p=2) basis functions for an

open, non-uniform knot vector:

! = {0,0,0,1,2,3,4,4,5,5,5}



- control points - knots
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Linear interpolation of control points

yields the control polygon

Quadratic basis
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- control points - knots
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- control points - knots

0

1

2

3

4

5

Cubic p-refined Curve

Cubic basis

- control points - knots
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Quartic basis



NURBS

 Non-Uniform Rational B-splines

 Circle from 3D Piecewise

Quadratic Curves
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Mesh

Control net

Toroidal Surface

Mesh

Control net

h-refined Surface



Mesh

Control net

Further h-refined

Surface

Mesh

Control net

Toroidal Surface



Mesh

Control net

Cubic p-refined

Surface

Mesh

Control net

Quartic p-refined

Surface



   Control Net                Mesh

Variation Diminishing Property

Lagrange polynomials NURBS
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Nodes



Finite Element Analysis and Isogeometric Analysis

! Compact support

! Partition of unity

! Affine covariance

! Isoparametric concept

! Patch tests satisfied

 Three Quartic Elements

Knot

insertion

Order

elevation

Order

elevation

Knot

insertion

p-refinement

k-refinement



Structural Analysis

• Isoparametric NURBS elements exactly

represent all rigid body motions and constant

strain states

Hyperboloidal Shell

• Mid-surface:

! x2 + z2 - y2 = 1

! -1 # y # 1

• R/t = 103

• Fixed at the top

and bottom

• Loading:

! p = p0 cos 2!

x

z

y



Thickness Discretization

Rational quadratic

basis functions through

the thickness

{

The NURBS surface

defining the mid-surface

is geometrically exact

Surface Discretization

Mesh 3Mesh 2Mesh 1



View 1
(displacement amplification factor of 10)

View 2
(displacement amplification factor of 10)



Detail of Radial Displacement

at Compression Lobe (Mesh 3)

Vibration Analysis



NASA Aluminum Testbed

Cylinder (ATC)

NASA ATC Frame



NASA ATC Frame and Skin

Main Rib



Coarsest mesh

15° segment of main rib 

Mesh 2



Mesh 3

First Rayleigh Mode

x-displacement



First Love Mode

x-displacement

ATC Frame and Skin
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 Vibration of a Finite Elastic Rod

with Fixed Ends

  

Problem:
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,xx
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Natural frequencies:

!
n

= n', with n = 1,2,3,...

Frequency errors:

!
n

h /!
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Comparison of FEM (p-refinement) and

NURBS (k-refinement) Frequency Errors
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Comparison of FEM (p-refinement) and

NURBS (k-refinement) Frequency Errors

FEM

NURBS

!
h

!

!h /" = n / N

Acoustic branch

Optical branch
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Comparison of FEM (p-refinement) and

NURBS (k-refinement) Frequency Errors
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FEM

NURBS
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Nonlinear Solids



   

Linear (sum) Nonlinear (product)

B F = !" / !X
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    Incompressibility:  B and F methods

P. Flory 1960’s, T. Hughes 1970’s, J. Simo 1980’s, D.R.J. Owen 2000’s

Modeled by a finite quarter plate

with exact boundary conditions

  Infinite plate with a circular hole



 Relative error in the L2 norm of stress

 Torus subjected to a vertical pinching load

The exact geometry is represented by quadratic NURBS

The mesh consists of 4 x 16 x 4 elements

  

R = 10 m    ! = 2.8333 "103  MPa    µ = 5.67 MPa    (# = 0.4998)

r = 8 m       p = 0.195 MPa
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Fluids and Fluid-Structure Interaction

Periodic inflow

Fluid domain

Solid wall

From Wall ’06, Tezduyar ’07

  Balloon Containing an Incompressible Fluid

(Re = 4 x 105)



(a) Top view (b) Bottom view

Balloon Containing an Incompressible Fluid

! Quadratic NURBS for both solid and fluid

! Boundary layer meshing

Movie goes here



Balloon Containing an Incompressible Fluid

  

d

dt
V

f
(t) = Q

in
t( )Mass conservation:

Phase Field Modeling:  Cahn-Hilliard Equation

C1 Quadratic NURBS



Cardiovascular Research

• Patient-specific mathematical models of major arteries
and the heart

• Cardiovascular Modeling Toolkit

– Abdominal aorta

– LVADs: Left Ventricular Assist Devices (R. Moser)

– Aneurysms 

– Vulnerable plaques and drug delivery systems

– Heart

  Medical Imaging:  Computed Tomography (CT)



(a) Volume rendering (b) Isocontouring (c) Surface model & path

Abdominal Aorta

    Mapping onto a patient-specific arterial cross-section



(d) Control mesh (f) Simulation results(e) Solid NURBS

Abdominal Aorta

Left Ventricular Assist Device (LVAD) with

Ascending Aortic Distal Anastomosis



Jarvik 2000 and Schematic of

Descending Aortic Distal Anastomosis

.

(a) Surface model and path (b) Control mesh (d) Simulation results(c) Solid NURBS

LVAD

Thoracic Aorta



(a) Pump off (b) 8,000 rpm

(c) 10,000 rpm

Data from a lumped-parameter model of the CV system with assist



(a) Pump off (b) 8,000 rpm (c) 10,000 rpm

>50 250

(cm/s)Flow speed

>8 4 0

(dyn/cm2)Mean WSS

(a) Pump off (b) 8,000 rpm (c) 10,000 rpm



Design to Analysis

•  Idea:

Extract surface geometry file from CAD modeling

software and use it directly in FEA software

•  Goal:

Bypass mesh generation

•  Test cases:

Import NURBS surface files directly into

 LS Dyna for Reissner-Mindlin shell theory analysis

Pinched Cylinder:  Problem Definition



Pinched Cylinder

Quadratic NURBS surface models

Pinched Cylinder

Quintic NURBS surface models



Quintic

Quadratic

Pinched Cylinder

Convergence of NURBS surface models in LS Dyna



S. Kolling, Mercedez Benz

Problems with NURBS-based

Engineering Design

–  Water-tight merging of patches

–  Trimmed surfaces



T-splines



   Unstructured NURBS Mesh

Reduced Number of Control Points



Water tight merging of patches

Hemispherical Shell with Stiffener

Computational domain

Actual domain
(from E. Rank et al.)

Loading:

! Gravity

! External pressure

p
g

Symmetry BCs

uz = 0



Hemispherical Shell with Stiffener

Mesh in parametric space

Mesh in physical space Mesh in physical space

 Locally Refined Meshes



Hemispherical Shell with Stiffener

Vertical displacement (smooth) Von Mises stress (singular)

Conclusions

• Isogeometric Analysis is a powerful

generalization of FEA

– Precise and efficient geometric modeling

– Mesh refinement is simplified

– Smooth basis functions with compact support

– Numerical calculations are very encouraging

– Higher-order accuracy and robustness

– It may play a fundamental role in unifying design

and analysis



Philosophy:

Geometry is the foundation of analysis 

Computational geometry is the future of computational analysis

Book in progress:

Isogeometric Analysis: Toward Unification of CAD and FEA

Analysis

Geometry
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