

Training the Next Generation of Simulation Engineers: NAFEMS Initiative in Skills Management

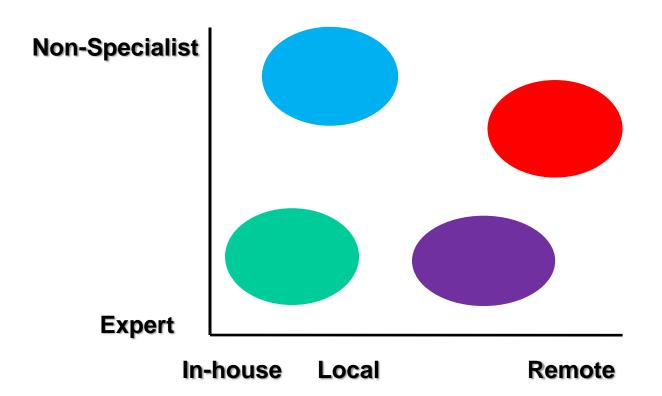
Tim Morris NAFEMS

Themes of NAFEMS

- Three primary themes
 - Software (80's to 90's)
 - Processes (90's to 00's)
 - People (00's to...)
- Associated activities (through committees of expert volunteers):
 - Benchmark problems
 - Publications
 - Seminars / conferences / training courses

Skills Management Initiative: Background

- Use of simulation growing
- Lack of suitably qualified and experienced engineers to perform the simulation
- Companies turning to alternative manpower resources
- How to manage the skill set of in-house and external simulation engineers?


- Consult with industry, academia and software vendors
 - Meeting with vendors at last NAFEMS World Congress
 - Meeting with industry in London: April 2008
 - Meeting in Paris: September 2008
 - Meeting in Berlin: October 2008
 - Meeting in USA: October 2008
- Looking to establish the needs

Who does Engineering Simulation and Where do They do it?

- In-House
 - Expert
 - Non-Specialist
- Contractor
 - Known "Local"
 - Unknown "Remote"

Who does Engineering Simulation and Where do They do it?

What are the Essential Skills for Engineering Simulation?

Technology

Tools

Process

What Could NAFEMS Do?

- Define a Modular Set of Learning Outcomes
- Provide Training Material for each Module
- Deliver the Training for each Module
- Examine/Certify Learners
- Accredit Training Providers

Findings From Industry Consultation

Should NAFEMS develop & publish a modular set of learning outcomes?

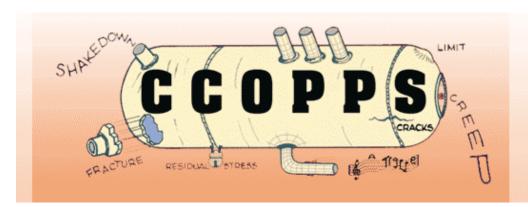
Should NAFEMS develop training material for these modules?

Should NAFEMS provide information about third party courses which do deliver the learning outcomes?

Should NAFEMS accredit training providers?

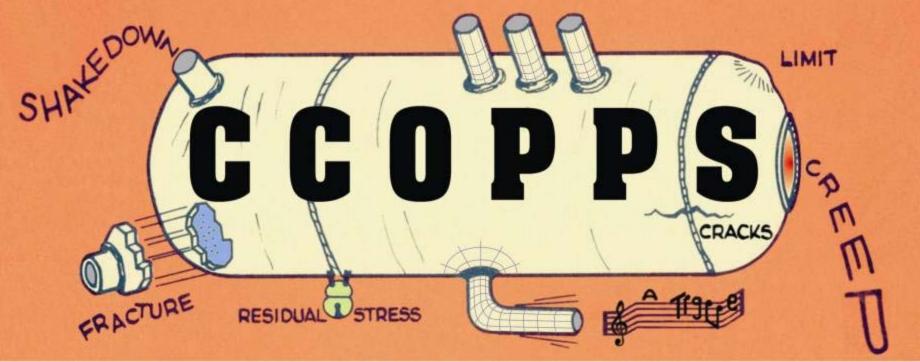
Should NAFEMS examine and provide certificates for the learners?

Should NAFEMS provide training courses for these modules?



How can this be Implemented?

- NAFEMS Task Force
 - Led by NAFEMS
 - Management and Administration
 - Management Board
 - Industrial Users
 - Define Goals and Approve Outcomes
 - Project Board
 - Industrial Users, Software Vendors, Academics
 - Refine Goals and Commission Outcomes
- Build on Outcomes from CCOPPS Project


CCOPPS Project

- Certification of Competencies in the Power & Pressure Systems Industry
- 2 year Leonardo da Vinci Project
- Led By University of Strathclyde
- NAFEMS is part of project consortium

INDUSTRY NEEDS SURVEY

Further analysis

DOMAIN EXPERTS

Finished

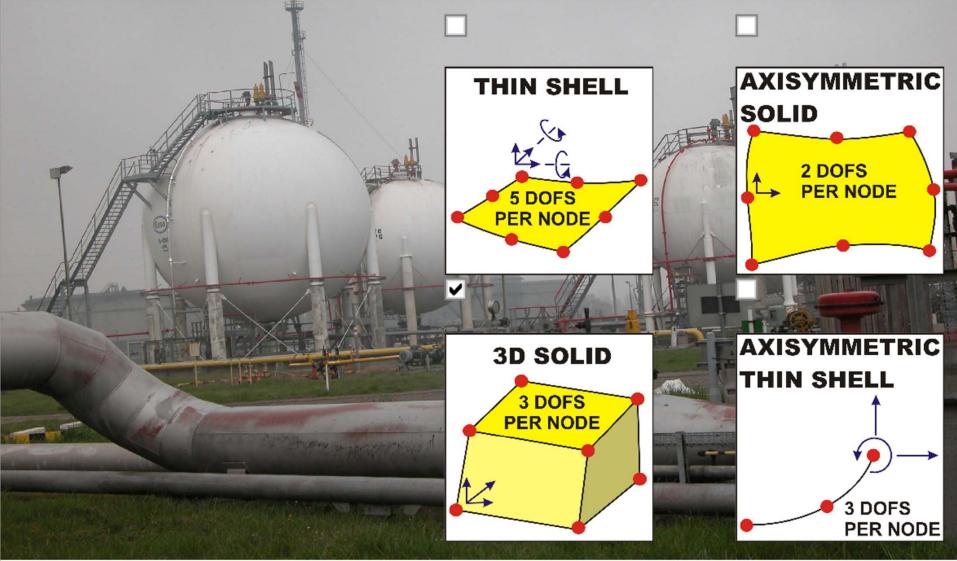

http://www.ccopps.eu/

EDUCATIONAL BASE 90% complete
CPD Modules launched
2009

WORK-BASED LEARNING MODULES

INDUSTRY FEEDBACK

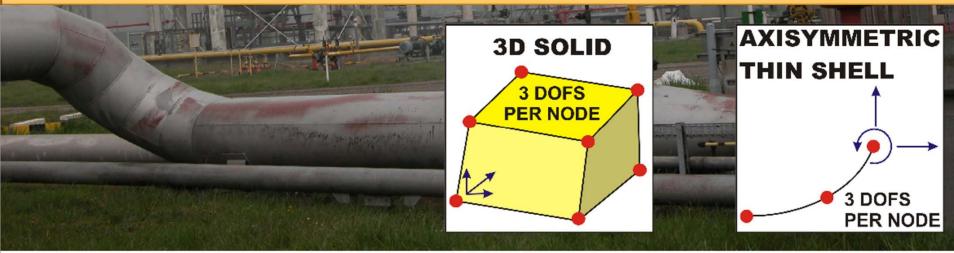
Currently underway



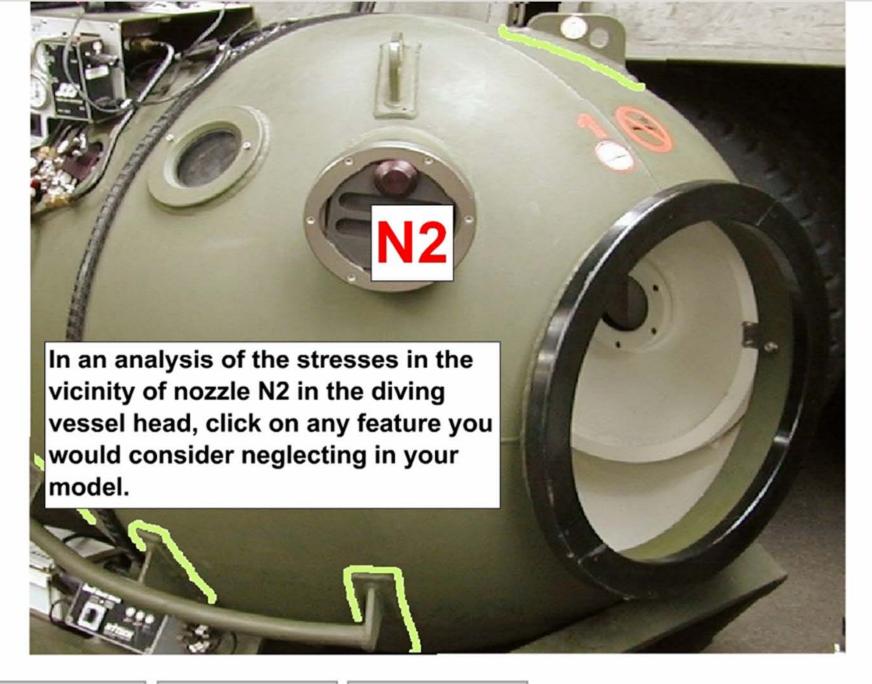
FEAap12	Employ a range of post-solution checks to determine the integrity of FEA results.	S, 6	FEAref68				
FEAap13	Use through-thickness stress linearization facilities where appropriate.	S, 7			ite Element Results, Baguley C		
FEAap14	Carry out sensitivity studies.	S, 7	FEAre and Ho	and Hose D R, Chapter 4 pp 29-34, NAFEMS, 199			
FEAap15	Model pipework bends, weldments and systems effectively.	A, 7	FEAR Guide f	Guide for Verification and Validation in			
FEAap16			Compu	tational Solid	Mechanics, ASME V&V		
FEAap17			10-200 NAFEM	A Victoria contrata con esperante per	007, Engineering Simulation,		
Analysis					t Systems, Requirements		
FEAan1	Analyse the results from small displacement, linear static analyses and determine whether they satisfy inherent assumptions.	S, 6	FEAref72				
FEAan2	Compare the results from small displacement, linear elastic analyses with allowable values and comment on findings.	S, 6	FEAref73				
FEAan3	Analyse the results from sensitivity studies and draw conclusions from trends.	A, 7	FEAref74				
FEAan4	Develop an analysis strategy that enables the relative significance of individual model parameters and their interactions to be evaluated	A, 7	FEAref75	ef75			
Synthesis							
FEAsy1	Prepare an analysis specification, including modelling strategy, highlighting any assumptions relating to geometry, loads, boundary conditions and material properties.	A, 7	FEAref76				
FEAsy2	Plan an analysis, specifying necessary resources and timescale.	A, 7	FEAref77				
FEAsy3	Prepare quality assurance procedures for finite element analysis activities within an organisation.	A, 7	FEAref78				
FEAsy4	Contribute to planning related to the effective development of analysis facilities.	A, 7	FEAref79				
FEAsy5	Contribute to the development of a competency process that supports staff technical development.	A, 7	FEAref80				
Evaluation							
FEAev1	Select appropriate idealisation(s) for components / structures, which are consistent with the objectives of the analyses.	A, 7	FEAref81				
FEAev2	Assess the significance of neglecting any feature or detail in any idealisation.	A, 7	FEAref82				
FEAev3	Assess the significance of simplifying geometry, material models, loads or boundary conditions.	A, 7	FEAref83				
FEAev4	Manage physical and human resources within an organisation; in an effective manner.	A, 7	FEAref84				

COMPETENCE CODE	RESOURCE REFERENCE	STANDARD LEVEL	ADVANCED LEVEL	EQF LEVEL		
FEAap10	FEAref66	×		7		
(Comp	ACHIEVED					
	Formally	Informally				
Illustrate various phy	C	C				
Singularity and expla results at such locati	ATTESTING SIGNATURE					
2. MINI	ACHIEVED					
	Formally	Informall				
B	C	C				
Recognises that stre corners, material inte	ATTESTING SIGNATURE					
3. COMPRE	ACHIEVED					
	Formally	Informall				
Is able to describe w can't be used. Recog	r	c				
of techniques that ar singularities such as special purpose mesi	ATTESTING SIGNATURE					
C C O P P S					DATE	
and a second second	Taxes T			28 Se	p 2008	

Which is the best element to determine the hot-spot stresses at the intersections of the multi-mitred pipe bend?


Which is the best element to determine the hot-spot stresses at the intersections of the multi-mitred pipe bend?

Answer:


3D Solid

Explanation:

The multi-mitre geometry is clearly not axisymmetric. While hot-spot stresses can be obtained from thin-shell elements, a 3D solid representation would allow both surface extrapolation and through-thickness linearization techniques to be used. This type of idealization would avoid the inherent approximations of thin shell theory and would also allow the actual weld-profile and any toe grinding to be modeled as well if necessary. Given today's typical computing resources, such a level of idealizations is perfectly feasible.

Summary

- Use of Simulation Changing
 - Experts
 - Designers
 - Offshoring
- Industry wants better management of simulation skills
- Role for NAFEMS in Pooling Knowledge & Resources
- Future initiative for NAFEMS
- Will Build on Foundations Laid by CCOPPS Project

Get Involved!

