

- Overview of CC-MPA M Cross
- CC FSI in CA A Svobodnik
- Coupled field analysis in ANSYS D Ellis
- LUNCH
- Numerical Simulation of Aluminium Foundry Processes – M Chumenti
- CC-MP for FSI A Slone
- Master-Class in CC-MP

RTD Thematic Area	Date		
MultiPhysics & Analysis Technology	Sep-02		

Characterising closely coupled MULTI-PHYSICS simulation

Mark Cross, Avril Slone Centre for Numerical Modelling and Process Analysis University of Greenwich, London, UK

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

(FENet)

FENet What is multi-physics simulation?

- Most CAE analysis software tools based upon single discipline:
 - CFD (fluid flow, heat transfer, combustion)
 - CSM (structures, dynamics, contact, heat transfer)
 - CEM (electro-magnetics)
 - Acoustics
- What of their interactions?
 - mostly we cheat or ignore them

FENet Challenge of multi-physics

- Multi-physics closely coupled interactions amongst the physics
- CAE modelling and analysis software is essentially phenomena specific :
 - CFD uses FV techniques with segregated iterative solvers
 - CSM uses FE techniques with direct solvers
 - CAA & CEM uses either FE/FV techniques

plus the heritage software approaches that go with each.

• Must ensure accurate filtering and mapping of data for volume source and boundary data

CFENet Levels of physical coupling

- Very Low 1 way - simple via a file between codes
- Medium 2 way

much trickier, mesh compatibility& time step constraints

- High
- time & space accurate
- very challenging in every respect!

FENet Multi-Physics solvers

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

FENet Multi-physics solver approach

Staggered Solution $\underline{K}_{f}^{n}\underline{a}_{f}^{n} = \underline{f}_{f}^{n} - \underline{g}_{1}(\underline{a}_{s}^{n-1}, \underline{a}_{t}^{n-1})$ $\underline{K}_{s}^{n}\underline{a}_{s}^{n} = \underline{f}_{s}^{n} - \underline{g}_{2}(\underline{a}_{f}^{n}, \underline{a}_{t}^{n-1})$ $\underline{K}_{t}^{n}\underline{a}_{t}^{n} = \underline{f}_{t}^{n} - \underline{g}_{3}(\underline{a}_{s}^{n}, \underline{a}_{t}^{n})$

$\underline{\mathbf{K}}_{\mathbf{f}}^{\mathbf{n}}\underline{\mathbf{a}}_{\mathbf{f}}^{\mathbf{n}} = \underline{\mathbf{f}}_{\mathbf{f}}^{\mathbf{n}} - \underline{\mathbf{g}}\left(\underline{\mathbf{a}}_{\mathbf{s}}^{\mathbf{n}}, \underline{\mathbf{a}}_{\mathbf{t}}^{\mathbf{n}}\right) \blacksquare \qquad \mathbf{P1}$ $\underline{\mathbf{K}}_{\mathbf{s}}^{\mathbf{n}}\underline{\mathbf{a}}_{\mathbf{s}}^{\mathbf{n}} = \underline{\mathbf{f}}_{\mathbf{s}}^{\mathbf{n}} - \underline{\mathbf{g}}_{2}\left(\underline{\mathbf{a}}_{\mathbf{f}}^{\mathbf{n}}, \underline{\mathbf{a}}_{\mathbf{t}}^{\mathbf{n}}\right) \blacksquare \qquad \mathbf{P2}$ $\underline{\mathbf{K}}_{\mathbf{t}}^{\mathbf{n}}\underline{\mathbf{a}}_{\mathbf{t}}^{\mathbf{n}} = \underline{\mathbf{f}}_{\mathbf{t}}^{\mathbf{n}} - \underline{\mathbf{g}}_{3}\left(\underline{\mathbf{a}}_{\mathbf{s}}^{\mathbf{n}}, \underline{\mathbf{a}}_{\mathbf{t}}^{\mathbf{n}}\right) \blacksquare \qquad \mathbf{P3}$

Parallel multi-physics solver strategy

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

Multi-Disciplinary Environment

Need for read and write data in different formats.

Multi-user environment for the development and application of different numerical simulation programs.

CENER Classifying Multi-physics

- One way coupling information only goes one way – loosely coupled
- Two way coupled some problems can be addressed by exchanging data between codes if mesh is similar and mpCCI like tools can be used
- Else closely coupled and problematic with phenomena specific codes
- Fluid-structure interaction (FSI) is always the key challenge in CC-multi-physics simulation
- CFD capability is another key issue in FSI problems

CFD in action:- Argon injection in

continuous casting

- Mould region of concast machine
- Main physical phenomena
- Complex multiphase flow dynamics
- Role of argon injection in the process

- 1. Time dependent, **turbulent free surface fluid flow and heat transfer** in the molten steel and flux regions
- 2. **Solidification** of the skin layer, under prescribed heat loss boundary conditions
- 3. Particle tracking **simulation of Argon bubbles** injected with the metal into the mould (many '000's of tracks used)
 - **Full coupling** between bubbles and liquid through buoyancy and interfacial forces
- 4. Full transient **simulation of flux-metal interface** behaviour under the influence of buoyancy and fluid inertial forces

Comp model: solution domain

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

(FENet)

Mesh details

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

(FENet)

Frames from a free surface animation show evidence of various wavelengths

(FENet)

Simulation results

(FENet)

Thermal and solidification flow fields

Turbulence level (effective viscosity) distribution

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

Bubble clusters

(FENet)

FENet Existing CAE analysis technologies

- Carried out a web based **survey** of all the major and emerging suppliers of CAE analysis technology to identify capability in
 - multi-disciplinary (MDA)
 - multi-physics (MPA)

simulation analysis

• Key feature was flow AND structural capability and degree of coupling

Sector Specific 'multi-physics' Software

Castings

- PROCAST

FENet

- http://www.ues-software.com
- MAGMASOFT
- http://www.magmasoft.com
- Forgings
 - DEFORM
 - http://www.deform.com
 - SUPERFORGE
 - http://www.mscsoftware.com
 - FORGE3

– http://www.transvalor.com

Temperature Profiles – MAGMASoft: Hansen et-al Numerical Simulation of Casting Solidification in Automotive Applications, Pub TMS

Sector Specific 'multi-physics' Software

- Polymers C-Mold http://www.moldflow.com
- Joining Processes SYSWELD (Welding software)
 - http://www.esi-group.com
- Electronic cooling
 - Flotherm http://www.flomerics.com

Tools claiming multi-physics capabilities:

- **ANSYS/Multi-physics** http://www.ansys.com/
- ADINA - http://www.adina.com
- PHYSICA+
- COMET
- FEMLAB
- ALGOR

- http://www.multi-physics.com
- http://www.iccm.de
- http://www.femlab.com/
- http://www.algor.com

FENet.

- ICCM, out of TU Hamburg, Germany
- Claims flow, heat transfer and solid mechanics including fluid-structure interaction
- Good flow and heat transfer web examples

COMET

- No web examples of solid mechanics or FSI
- Is it actually MDA or MP?
- BOUGHT OUT BY STAR-CD COMPANY & WITHDRAWN FROM MARKET

• Built upon MATLAB

- Uses FE methods
- Heat transfer
- Solid mechanics
- Electro-magnetics
- Flow (Potential only? Not competitive with commercial CFD codes)
- Some coupling claimed no examples on web

FEMLAB

• Definitely multi-disciplinary but not CC-MP?

- FE approach 3D
- Claims:
- CFD
- Heat transfer
- Solid mechanics
- Examples of simple multi-physics on web but cannot be easily viewed!

ALGOR

• One way coupling from flow/heat transfer to solid mechanics - loosely coupled in reality

ANSYS - FLOTRAN

- Inkjet printer nozzle
- FE, well established toolkit
- Good on solid mechanics, heat transfer and electro-magnetics
- Examples of coupled electric-thermalstructural field calcs, but not on the web!
- FLOTRAN is CFD tool
- Limited capability eg free surface is 2D/ axisymmetric
- Definitely MDA, but MP limited ?

MSC-NASTRAN et al

• Air Launched Cruise Missile showcase MP example!

- Subject to engulfing fuel fire (temp 1273 K)
- Finite element model ~ MSC Patran
- Radiantly heated -MSC Patran Thermal
- Loosely Coupled
- Interface MSC Patran EXODUS PCL
- External Sandia software
 - Coyote (Thermo-Chemical-Fire)
 - Pronto (Dynamic)
 - Jaq (Structural)
 - Toro (Electro-magnetic)
- Definitely MDA, but MP?

• Very strong on non-linear solid mechanics analysis

ABAQUS

• Coupled problems

(FENet)

- Thermo mechanical
 - sequentially or fully coupled
 - Disc Brake fully coupled
- Thermo-electrical
- Pore fluid flow-mech
- Stress mass diffusion
 - sequentially coupled
- Piezoelectric (linear only)
- Acoustic mechanical (linear only)
- Some MDA, not MP!

LS-DYNA

- Human-clothing interaction
- Dynamic non-linear FE
 - Contact interaction with the body
 - Large displacements
- Associated techniques
 - airbags and seatbelts in cars
- Stresses ~ bra cups and straps
- Jogging Heat transfer?
- Human tissue
 - Solid mechanics or
 - Non-Newtonian fluid?
- Dynamic, but is it MDA or MPA?

ADINA

- Anti-locking Brake System (ABS)
- Large structural motion.
- Fluid
 - Various turbulence models
 - Incompressible, slightly/fully compressible
- Different meshes for fluid & structure
- Variables of interest
 - Fluid pressure
 - Flow characteristics of brake fluid
 - Stresses in steel ball.
- Contact at the top? Spring?
- Claims MP,

but no real examples

PHYSICA+

- Spin off from University of Greenwich
- Uses FV-UM methods
- Claims:
 - NS flows
 - Heat transfer
 - Solid mechanics
 - Electro-magnetics
 - All in parallel
- Website demonstrates genuine MP in parallel

Some multi-physics apps

- Sea landing of space vehicle
- Welding
- Semi-levitation melting
- Granular flow
- Projectiles colliding into structures
- Casting/solidification processing

(FENet) Sea landing of space vehicle

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

(FENet) High quality cheats

- Fix the mesh around the vessel
- Assume the vessel is rigid
- Transform the flow equations to capture the impact of the vessel movement
- Equivalent of moving mesh effects in CFD equations
- Still need to calculate the effective movement of the vessel (subject to the load on it)
- SO NASTY PROBLEM BUT CAN BE DONE BY A CFD CODE AND SOME HELP (see CFX website for an example with a commercial code)

CFENet Welding - natural multi-physics

- Processes involve:
- -free surface flow
- -electromagnetic forces
- —heat transfer with solidification/melting
- —development of non-linear stress
- Ideal candidate for multi-physics modelling

FENet T-Junction arc weld

Figure 7: FV unstructured mesh used for weld-pool simulation

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

FENet Experiment and simulation

Cross-Section Liquid Fraction

T-junction section, highlighting HAZ region

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

Weld pool dynamics

(FENet)

Velocity vectors in crossection

Lorentz force distribution in the weld-pool

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

- Problem involves flow, heat transfer, phase change, em fields, and stress
- Flow, heat transfer & phase change are fully coupled could do with a CFD code
- Em field influences the heat and flow, but . .
- Everything effects the stress, but it doesn't couple back to anything
- SO could use coupled CFD & CSM codes

BUT . . . need mesh compatibility

FENetSemi-levitation melting of reactive alloys

High quality components

- Semi-levitation of titanium-aluminium alloys
- Involves
 - free surface flow
 - heat transfer
 - melting/solidification
 - electromagnetic fields
- ALL COUPLED CC-MP of the worst kind

Granular flow:- Filling / Discharge of a hopper

Granular material behaves Simultaneously as a fluid and a solid – the fluid or solid state is a function of local conditions

Challenge to simulate granular Flow behaviour

Distribution of total solids fraction over time

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

FENet

FENet Hopper discharge in mass flow mode

Distribution of total solids fraction over time

FEMGV 6.1-02 : University of Greenwich	29-AUG-2002 17:39 hlmf.tif
MODEL: HLEFMF CASE1: PHYSICA RESULTS STEP: 1 TIME: .3 NODAL GRANSOLF MAX = .5 MIN = .248E-2	.5
	. 475 . 452 . 429 . 405 . 381 . 357 . 333 . 31 . 286 . 262 . 238 . 214 . 19 . 167
Y A Z X	.101 .143 .119 .952E-1 .714E-1 .476E-1 .238E-1 0

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

FENet Hopper discharge in core flow mode

(FENet) Hopper discharge: arching

Distribution of vertical stresses over time

A real cheat

- Problem all about materials that behave as either fluids or solids depending on localised conditions
- BUT . . . The solid is rigid plastic and so modelled as a non-Newtonian free surface flow
- Hence, all done in a CFD context.

FENet.

- Ingot casting
- flow
- heat transfer
- solidification/melting
- elasto-visco-plastic stress all coupled

Ingot geometry

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

(FENet)

Analysis mesh

Mesh ¼ of geometry

FENet

A mesh partition for parallel run on 8 processors

(FENet)

Parallel performance results - 409K mesh on Compag cluster

Р	T-calc	T-file	T-tot	Sp-	T-tot	Sp-
				calc	/T-file	overall
1	82072	609	82681	1	135.8	1
2	43958	1576	45534	1.87	28.9	1.82
4	22034	1647	23681	3.72	14.4	3.49
8	10325	1360	12021	7.95	8.84	6.88
12	5173	1670	6843	15.87	4.10	12.75

- Involves fluid flow, heat transfer, solidification and stress
- Flow, heat transfer and solidification all closely coupled
- Flow, heat transfer and solidification all influence the stress, but not the other way around
- SO . . . Could use a coupled CFD & CSM code
- BUT . . . Must have mesh compatibility

High Impact Projectile

- Approach
 - Eulerian framework- avoids remeshing.
 - Projectile & target non Newtonian fluid.
 - Norton Hoff model, incompressible.
 - Boundaries free surface end of time step.
 - Scalar Equation model fluid marker 0/1

This is a structural problem being solved by a CFD procedure – so a major cheat, BUT . . .

FENet Projectile colliding with structure

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

Effective Strain Movie

(FENet)

- Involves fully coupled:
 - turbulent NS fluid flow
 - Heat transfer
 - Solidification & melting
 - Multi-component transport
 - Local thermo-dynamic equilibrium
- Essentially a CFD based problem

FENet Model problem based on expts

u=v=0:

Based on Expts of Krane & Incopera on lead-zinc

u=v=0;

Figure 1. Geometry of the cavity and boundary conditions

FENet Binary alloy predictions

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

FENet Binary alloy model vs. expt

Ternary alloy model

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

FENet

CFENet Ternary alloy model vs expt

Multi-physics simulation

- Challenge here is to:
 - Characterise classes of MP problems
 - Most CC-MP solved as cheats where a fluid is modelled as a solid and vice-versa
 - Flow + thermal + acoustics/electromagnetics OK
 - Solids + thermal +acoustics/electromagnetics OK
 - The FSI cheats can be very effective
 - There are limitations to the FSI cheats
 - Whatever CC-MP makes serious constraints on the simulation technology that can be used

