THE POWER TO DELIVER

FINITE ELEMENT SIMULATIONS IN LM WIND POWER

NAFEMS 2010 Gothenburg

By Jesper H. Garm, Christian Lundsgaard-Larsen, Anders Libak Hansen and Rasmus C. Østergaard

Imwindpower.com

Results and customer portfolio

- **2006**
 - Turnover : 474 Mio. EUR
 - Employees : 3,683
- **2007**
 - Turnover : 579 Mio. EUR
 - Employees : 5,905
- **2008**
 - Turnover: 885 Mio. EUR
 - Employees: 7,217
- Today
 - Employees: ~4,500

We partner up with the main wind turbine manufacturers:

Product Range

LM Production process

- 1. Lay-up of glass fibre and core materials
- 2. **Prepare for infusion**
- 3. VARTM process
- 4. Impregnation with polyester
- 5. Curing of shells
- 6. Two webs placed to stabilise the shells.
- 7. **De-moulding.**
- 8. Finishing

Wind tunnel testing

- Development of profiles with better performance
- Testing of auxiliary details as slats, spoilers etc

Large scale testing for verification

Dynamic flap wise test

Static test

Organization

Core engineering

Aero dynamics

10 Employees: Wind tunnel testing, CFD, Tools development Stress enginerering FE team: 10 Employees FE tasks, Tools development **Materials**

15 Employees: New materials, materials characterizations, Design specifications

Total:

Approx12 with a PhD degree Approx 30 with a Masters degree Organisation enables us to focus on the core competences: **Do what you do best**

The blade design process

How can we ...

- ... make a large number of new blade designs every year?
- ... have fast time to market and quick response to the customers?

Automation and Standardization

Tools Developing/Programming Goal: 1 button standard structural design of blade

Standard laminate plan, layup optimization, sandwich panel optimization **AutoFEA**

Automatic generation of FE model with properties, ply drops, application of loads **AutoDoc**

Automatic post processing of results and report generation

Result (Spin off effect): Routine work is minimized Now we can focus on the fun stuff! ©

Global FE model Undeformed, Deformed and Strains

FE tasks, AutoDoc, Stretched plot, Strains LM WIND

FE tasks - AutoDoc

FE tasks – Transportation rig

12

Full scale testing for verification

» Crash test of 40m blade

Full scale testing for verification

» Dynamic flap-wise test

FINITE ELEMENT AND FRACTURE ANALYSIS IN WIND TURBINE BLADES

THE POWER TO DELIVER

October 26th, 2010

By Anders Libak Hansen, Christian Lundsgaard-Larsen, Jesper H. Garm, Rasmus C. Østergaard

Imwindpower.com

AGENDA

- **1. FEA and Fracture Mechanics**
- 2. Progressive Damage Analysis
- 3. Fatigue Life Predictions

Reliable design requires control of different length scales

Full scale blade simulation:Web bond defect

Component test simulation:

- Web joint
- T- Spoiler

Material characterization:

- DCB specimen (Monotonic)
- Ply-drop in laminate (Fatigue)

FEA and Fracture Mechanics

» Linear Elastic Fracture Mechanics (LEFM)

- » Stress intensity factors
- **»** Contour integrals (Less mesh sensitive)
- » Requires a pre-crack

» Progressive Crack Growth

- » Virtual Crack Closure Technique
- » Cohesive zone modeling (CZM)

» CZM

- > Fracture/damage process zone => Length scale effects
- Description >> Non-linear fracture mechanics
- Does not require pre-crack(s)

Cohesive Zone Modeling

» Work of separation per unit crack area

$$J_{cz} = \int_{\Gamma_{cz}} w dx_2 - \sigma_{ij} n_j \frac{\partial u_i}{\partial x_1} ds$$

$$w = \int \sigma_{ij} d\varepsilon_{ij}$$

» Traction-separation laws

$$\sigma(\delta_n, \delta_t) = \sigma_n(\delta_n, \delta_t) \mathbf{n} + \sigma_t(\delta_n, \delta_t) \mathbf{t}$$

$$J_{cz}(\delta_n^*, \delta_t^*) = \int_0^{\delta_n^*} \sigma_n d\delta_n + \int_0^{\delta_t^*} \sigma_t d\delta_t$$

$$\sigma_t(\delta_n, \delta_t) = \frac{\partial J_R(\delta_n, \delta_t)}{\partial \delta_t}$$

$$\sigma_t(\delta_n, \delta_t) = \frac{\partial J_R(\delta_n, \delta_t)}{\partial \delta_t}$$

» Double Cantilever Beam

Material interface characterization \mathbf{x} **R-curve** behaviour)) Cohesive law >>1) Test 3) FEA σ J_R 2) Analytical σ_o $\sigma = \frac{\partial J_R}{\partial \delta^*}$ J_{ss} model J_o $-J_{bridging}$ J_o $J_{bridging}$ σ_1 δ^* δ^* δ_c

» Double Cantilever Beam

» Web joint component test

- » Virtual test bench
 - Design Materials Process
- » Strength envelope
 - » Axial and bending loads

» Web joint component test

» T-spoiler component test

- » Combined loading from spoiler and blade
- » Fracture mechanics design criteria
- » Damage tolerence

» T-spoiler component test

LEFM: Fatigue loading of ply-drops

- Ply-drops are used in transitions between thick and thin laminate
- Ply-drops may lead to stress concentrations, which reduces fatigue life-time
- Prediction of the life-time is made using FE and fracture mechanics

Fatigue test of ply-drop specimens

 Fatigue tests conducted on ply-drop specimens

0 cycles

 For considered loadlevel, a visible crack has initiated after 3000 cycles

3,000 cycles

822,000 cycles

5ect, (e

 Crack continues to propagate during fatigue loading

2,007,000 cycles

Paris law from material tests

 Four point bending fatigue test used to drive the crack

- Paris law extracted for the considered material
- Paris law describes crack growth rate as function of loading magnitude (energy release rate)

Procedure for predicting fatigue life-time

- » G is calculated for present crack length (initial crack length is 1 mm)
- Corresponding crack growth rate found from Paris law diagram
- Crack propagation length at n number of cycles found and added to FE model

Comparison of numerical and experimental results

- » Number of cycles to failure compared for experiments and simulation prediction
- Sives a rough estimate of the fatigue life-time
- FE-model is used to find the most critical position of the ply-drop in a laminate

» Full-scale blade simulation

- » Interaction between non-linear deformation and fracture
- » Imperfection analysis
- » Damage tolerence

» Example

- » Lack of glue on bond line
- » Debonding
- >> Buckling

» Full-scale blade simulation

Thank you for listening!

» Questions, comments?

Contact:

Jesper Hasselbalch Garm Email: <u>JHG@Imwindpower.com</u>

Anders Libak Hansen, Email: <u>ALHA@Imwindpower.com</u>

Virtual Wind Tunnel Tour

