

IMPACT SIMULATION ON THE REAL PART OF AIRCRAFT STRUCTURES

Radek Doubrava VZLU a.s., Czech Republic

<u>Aim</u>: prediction of the impact behavior of hard and soft body immediately after the impact to part of aircraft structures.

- Description of problem
- Projectile impact
 - Measurement
 - FE simulation
 - Comparison between measurement and FE simulation

Bird strike

- Measurement
- FE simulation
- Comparison between measurement and FE simulation

Conclusions

Description of problem

In the service of an aircraft has been possibility risk of emergency cases from point of view unforeseeable circumstances (e.g. bird strike, sucked impurities to the engine etc.), or owing to human factor (e.g. projectile, missiles etc).

http://en.wikipedia.org/wiki/Bird_strike

http://en.wikipedia.org/wiki/File:Air_France_Flight_4590.jpg

Projectile Impact

Aircraft surface scanning

Comparison between real damage and non-damage (CAD) surface

Projectile Impact

Comparison between measurement and FE simulation

Bird strike Test Method and Facility

Diametr of muzzle [mm]	length of muzzle [m]	weight of bird	velocity of bird [km/h]
125	25	2lb (0,91kg)	650
125	25	4lb (1,81kg)	450

0.25

03

PRESSURE [MPa]

NAFEMS NORDIC REGIONAL CONFERENCE 2010

Bird strike

FE simulation

>The ABAQUS/Explicit has been used for impact simulation onto the part of aircraft structure

> the bird for sharp parts such as pitot probe was modeled as a cylinder with refine mesh on the contact surface for point of view some numerical singularities elimination. For oblique parts has been used standard bird model (cylinder with spherical ends)

>In the simulation, the bird adopts an elastic-plastic model with shear and tensile failure

*TENSILE FAILURE *SHEAR FAILURE

>The bird nodes are charged with an initial velocity

Bird strike Pitot probe

Bird mass =2lb (0,91kg) Velocity = 180 m/s (648km/h)

NAFEMS NORDIC REGIONAL CONFERENCE 2010

Bird strike

Windshield glass of civil aircraft

Bird strike Windshield glass of military aircraft

Bird mass =4 lb (1,82 kg) Velocity = 300 - 450 km/h

Future works

> development of the new synthetic model of bird with inner skeleton stiffness simulation

> simulations will be increased about CEL (Coupled Eulerian –Lagrangian) technique

> improve boundary conditions (frame, gasket etc.)

➤ improve material properties

Conclusions

The result shows good agreement between measurement and FE calculation. Although this work is only a first approximation, and implemented in relatively simplified terms, this method of finding damage propagation is applicable for:

> diagnostics of airframe damage - scanning of aircraft surface, photogrammetric system application etc.

 \succ application for structure repair evaluation – damage of inner structure, composite path application etc.

service operations – visual inspection

> performance of airworthiness from point of view bird strike

