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Planned Activities in North America

» Webinars

= New topic each month!

. Recent webinars:
Multiphysics Simulation using Implicit Sequential Coupling
= CCOPPS: Fatigue of Welded Pressure Vessels

= Applied Element Method as a Practical Tool for Progressive Collapse
Analysis of Structures

= AUTOSIM: The Future of Simulation in the Automotive Industry
= A Common Sense Approach to Stress Analysis and Finite Element Modeling

= The Interfacing of FEA with Pressure Vessel Design Codes (CCOPPS
Project)

= Multiphysics Simulation using Directly Coupled-Field Element Technology
= Methods and Technology for the Analysis of Composite Materials

= Simulation Process Management

= Simulation-supported Decision Making (Stochastics)

= Simulation Driven Design (SDD) Findings

To register for upcoming webinars, or to view a past webinar,
please visit: www.nafems.org/events/webinars

www.nafems.org
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Planned Activities in North America

NAFEMS NA 2008 Regional Summit

NAFEMS 2020 Vision of Engineering Analysis and Simulation

= NAFEMS 2020 will bring together the leading
visionaries, developers, and practitioners of CAE-
related technologies and business processes

= Goal: Provide attendees with the best “food for thought
and action” to deploy CAE over the next several years

= Location: Hampton Roads Convention Center,
Hampton, Virginia
= Date: October 29-31, 2008

Agenda Now Available

For more information, VISIt:
www.nafems.org/nafems2020

www.nafems.org
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Keynote Presenters for NAFEMS 2020
» Prof. Ahmed Noor, Old Dominion University

» Prof. Thomas J.R. Hughes, University of Texas at Austin
» Dr. Takeshi Abe, Ford Motor Company
» Prof. Mary Boyce, MIT

» Dr. Joel Orr, Cyon Research

www.nafems.org
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2-Day Short Course on V&V for Aerospace, Civil

and Mechanical Engineers
Finite Element Model Validation, Updating, and Uncertainty
Quantification for Linear and Non-linear Models

» Goal: Attendees will learn the latest techniques for

evaluating the accuracy of computational models over a

range of parameter values, how to design validation
experiments that will determine the simulation range of

validity, and how to calibrate model parameters to reflect

the measured response from experiments — event for nonlinear
Models

eLocation: Hampton Roads Convention Center
Hampton, Virginia

*Date: October 27-28, 2008

i

For more information, visit: www.nafems.org/nafems2020
www.nafems.org
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Complexity Management in The Industry

Ontonix
NAFEMS Webinar, 14-th August, 2008




What is Complexity?

Complexity is an attribute which characterizes every system, just like energy or
momentum. It can be measured, and therefore managed. The value ranges from 0
to infinity.

Every dynamical system possesses a maximum sustainable level of complexity.
Close to this maximum, called critical complexity, the system becomes fragile and
vulnerable.

Critically complex systems are very difficult to manage and can easily develop
surprising behavior.

The risk exposure of any dynamical system can be measured and understood in
an innovative way via complexity.

Based on the concepts of complexity and critical complexity, new ways of
measuring robustness have been conceived.

10
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What is Complexity?

Complexity is a function of structure, uncertainty,
coarse-graining
and resolution Uncertainty

(How noisy the
interactions are)

Structure W €  Resolution

(How much precision

(How information
is required)

flows within a
given system)

1 3

Coarse-graining

(How many variables are
needed to describe a problem)

© Copyright 2008, Ontonix srl. All rights reserved. No part of this document may be reproduced in any form without the written consent of Ontonix srl.
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Complex or Complicated?

A system may be complicated, but still
have low complexity.

A large number of parts doesn’t
generally imply high complexity. It
does, in general, imply a complicated
system.

In order to measure the amount of
complexity it is necessary to take
uncertainty into account.

Complexity implies capacity to
surprise, to deliver unexpected
behaviour.

Deterministic systems have 0
complexity.

12
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Complexity Principles

o Principle of Complexity:

When the complexity and uncertainty of an

engineering system increase, our ability to predict its
behavior diminishes until a threshold is reached
beyond which accuracy and significance become
almost mutually exclusive.

PRECISION

o Principle of Incompatibility:

High precision is incompatible with high complexity. COMPLEXITY

L. Zadeh, UCLA

13
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Extracting Knowledge From Data

A ETY _ E”Elfgl

Complexity Measures

Upper=19.33
Alert=17.12
Current= 14586
Lower=10.70
Entropy =0.00
Map Info
Modes =44

Active Nodes = 37
Rules=78
Density=0.12

Robustness (13=801%
Robusthess (2= 98.5%

Yary High

High
-
Medium

Loy

Wary Lo

We transform multi-dimensional
data to Process Maps using our
prOprletary Image-prOCeSS|ng Generalized Correlation: 0.72
technology.
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How OntoSpace Generates Maps

OntoSpace builds maps based on raw User data. These are known as System Maps. The significant relationships between the nodes
are established automatically. In other words, the User does not have to define in any way how the nodes of the graph are linked — this
is done by OntoSpace using a proprietary algorithm.

Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 Variable 7 Variable 8 Variable 9 Variable 10 Variable 11 Variable 12

measurement 1
measurement 2
measurement 3

measurement 4

In the example on the left, one may notice that variable 5
(node 5) isn’t linked to any other node. This is because
OntoSpace has determined that there are no significant
relationships between this variable and all the remaining
variables in the system.

15
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Process Map Topology: Understanding
Dynamical Systems

System M g o .
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The concept of hub is fundamental for the analysis of system robustness. Single-hub systems are known to be more vulnerable than
multi-hub systems. Loss of a hub in a single-hub system may lead to catastrophic collapse. 16
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Complexity x Uncertainty = Fragility

When uncertainty meets high complexity, the result is fragility. Simple systems can
cope better with uncertainty than highly complex systems.

Highly complex systems are more exposed to the effects of uncertainty because of
the countless ways in which they process information. They can fail in many ways,
often due to apparently innocent causes.

Uncertainty in the environment, cannot be avoided. We must learn to live with it.
Hence the need to manage complexity.

Since fragility is the prelude to risk, risk management can be accomplished via
complexity management.

17
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Nature Increases Complexity (Functionality): There
IS a Price to Pay!
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Complexity x Uncertainty = Fragility

Cdesign X (Umanufacturing + Uenvironment) = Fproduct

o A highly sophisticated design will result in a fragile product if:
o The manufacturing process is of poor quality
o The environment is very “turbulent”

o Hence, a more robust product requires:
o A high-quality manufacturing process, or
o Aless severe environment in which to function, or
o Aless “ambitious” initial design

19
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Complexity-Based Design

A less complex solution is generally:

a

Less expensive to design and engineer
Less expensive to manufacture
Less expensive to service (replace broken components, etc.)
Cheaper
Easier to operate
Less fragile. This means:
o Less warranty costs

o Less recalls
o Less law-suits

© Copyright 2008, Ontonix srl. All rights reserved. No part of this document may be reproduced in any form without the written consent of Ontonix srl.
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Complexity-Based Computer-Aided Design:
Pedestrian Bridge

Design parameters:

Height
Dimension fraction
Rib spacing
Thickness factor

Cut Depth
Cut width

Radius Spacing factor

Flange distance

© Copyright 2008, Ontonix srl. All rights reserved. No part of this document may be reproduced in any form without the written consent of Ontonix srl.
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Complexity-Based CAD: Pedestrian Bridge Geometric
parameters

Quarter model view:

Rib Spacing is the amount of holes between ribs /T/

The dimension fraction is D/T ‘

The spacing factor is S/T \ X

t is the flange distance

Thickness factor = x/Height

If the thickness factor is increased

Cut depth, width and radius determine the shape of the ribs

22
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Complexity-Based CAD — The Concept

Starting from the initial nominal model, a sequence of randomly generated solutions
is created. This is done using Monte Carlo techniques and a multi-run environment.

For every solution, a CAD system is used to automatically generate an FE mesh.

For every mesh a static and an eignevalue analysis is run in order to determine
stresses, deflections and natural frequencies.

The process is repeated a few hundred times and is fully automatic (one loop).

The results are processed and feasible solutions are determined by specifying
desired levels of:

o Stresses
o Deflections
o Natural frequencies

Various solutions are found to satisfy constraints and performance objectives.
23
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Complexity-Based CAD — The Concept

24

Which one is best? What is “best”?
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Solution 1

N\

Complexity-Based CAD — The Concept

Rib Spacing is the amount of holes between ribs

T
The dimension fraction is D/T D r
The spacing factor is S/T _-S\

t is the flange distance

Cut depth, width and radius determine the shape of the ribs

Thickness factor = x/Height

If the thickness factor is increased

Height

N\

Complexity 7.50

Cut Depth
CutWidth

+ Lower&Upper Critical Complexity: 5.91 | 5.03

Solution 2

Complexitg 11.82

Frocess Map Info

Lower&Upper Critical Complexty: 9.23 [ 1417

v

Frocess Map Info

Stress Outer Flange

“f Stress Ribs
9
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s ) Rules = 24 gt Rules = 35
Density=013 e Density=0.20
Rib Spacing
Sy Factr
> Robustness = §6.04 % ] Main Rib Robustness=185.14 %
>

,T Inner Flange Very High T Inner Flange Wery High

; High TRibs hiloh
Thickness Factor . ATmckniess Factor N —

. Mass S Loy

G, T Glbbal Disp Low 4
: Local Disp Factar
;- 4 Wery Low pevlow
I"}Iffeak Laocation .
First Made “ég e
@+ cecond Made ss Dtk
Stress Deck tressihain Rib
® Stress Main Rib . Btress Inner Flange
Stress Inner Flange : Stress Outer Flange
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Example of Complexity-Based Design: Turbine
Disk Design

SEIE

System Map

System Map

=13

Solution 1

Complexity Measures

Upper=27.06
Alert=24.00
Current= 22.57
Lower=14.11
Entropy=0.00

Map Info

Modes = 45
Active Nodes = 37
Rules =193

Density=0.14

Rohustness (1)=7T8.1%
Robustness (2= 54.4%

Wary High
High

* Medium
Lo

Wary Lo

Solution 2

stressy
1
P

Complexity Measures

Upper=19.33
Alert=17.12
Current=14.86
Lower=10.70
Entropy=0.00

Wap Info

Modes = 44
Active Modes = 37
Rules =78
Density=0.12

Robustness {1)=80.1%
Robustness (2= 59.5%

Wery High
High

el
Medium

Lowe

Wery Low

Generalized Correlation: 0.72

Solution 2 has much lower complexity (15.8 vs. 22.6)

and slightly higher robustness than Solution 1.

26
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Example of Complexity-Based Design: The James
Webb Space Telescope

Option 1 Option 2

Best option: lowest
complexity with
same performance

JWST —
Telescope

JWST
Adapter

Option 3

Cryogenic

upper InterStage Structure

stage e (part of ESC-A)
[ESC-A)

/| [ Solid Rocket
/1 ‘ " /E\Wsle' {EAP)

Mode 25 (16,61) A= 4 ‘ ! ! *
| J

Option 4
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+afovs o L zhos 0
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| ‘ + L & v
e James Webb Space Telescope payload adapter. . MRS
[ it Courtesy EADS CASA Espacio. o
wea| | - —T T T
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! s ] Badh "
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Crash Test Data Processing
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133
Analysis of crash-test

data shows that over the
past decade, complexity
has been increasing.
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Measuring Robustness in Mechanical Systems

;. System Map _ _ _ ;. System Map
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Complexity: 24.93 Lower&Upper Critical Complexity: 17.16 | 34.02 Complexity: 5.67 Lower&Upper Critical Complexity: 3.74 |6.15
Frocess Map Info Frocess Map Info
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L

Robust design and related techniques have been object of discussion for over a decade. However, the robustness of
designs conceived using such methods has never actually been measured and no global measure of robustness has
ever been proposed.

Recently developed complexity-based robustness measures allow engineers to quantify the global robustness of any
dynamical system. 29
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Measuring Robustness in Dynamical Systems

A fundamental concept is that of critical complexity.
In the proximity of critical complexity a Process Map begins to break up.

The topology of the Process Map reflects the functionality of a given system in
that it reflects the structure of information flow within the system.

It is crucial to maintain the topology of a Process Map intact for a correctly
funtioning system.

Margin

Critical complexity | ——» o 1_ -

Complexity —_—

Robustness is proportional to the

Margin Ccritical — C. This measure is
known as topological robustness and
quantifies the system’s ability to preserve
Lower complexity | — its functionality.

30

© Copyright 2008, Ontonix srl. All rights reserved. No part of this document may be reproduced in any form without the written consent of Ontonix srl.




More on Robustness: The Connectivity Histogram
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Additional information on robustness may be obtained examining the shape of the Connectivity Histogram. Spiky
histograms (known as Zipfian) denote fragile topologies, while flatter ones point to more robust systems. 31
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Holistic Plant Monitoring
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Power Turbine Monitoring
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Alert complexity
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Air Traffic Monitoring
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In-Flight Structural Health Monitoring
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Measuring The Credibility of a Computer Model
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How well does the numerical model emulate the real thing?
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Model Credibility Index

MClI: = (Ctest' Cmodel)/ Cest

Weak Condition: Ctest = Cmodel

0 Ctest > Cmodet - Model (generally) misses physics
0 Ciest < Cmodet - Model (generally) generates noise

Complexity measures the amount of structured information
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Measuring Model Credibility — Process Map
Topology
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Strong Condition: Map test = Map mode

Qa MCl: = (Ttest = Tmodel)/ Ttest
o Based on this index, the credibility of this industrial crash model is 0.8

© Copyright 2008, Ontonix srl. All rights reserved. No part of this document may be reproduced in any form without the written consent of Ontonix srl.




From Data to Knowledge
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Knowledge Map

A dynamic and inter-related set of rules constitutes a body of knowledge which can evolve in time as new data is gained.
Such maps allow users to understand how sophisticated systems really work, how disciplines interact, which potential failue

modes exist and provide measures of vulnerability (robustness).
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Complexity-Based CAE — A Systems Approach

Aerodynamics

Power & Transmission

Process Maps which gives Users an
integrated and holistic view of:

« Interaction between disciplines
« Degrees of coupling

« Critical variables

« Global robustness measures

« Failure modes

e Complexity

Safety

VH & handling
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essay concepts

Engineering complex systems
The emergent properties of complex systems are far removed from the
traditional preocccupation of engineers with design and purpose
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Is Optimality
Convenient?

performance, in the face of effects that may
potentially destroy it. However, the optimal
state is a high-risk state — good returns at the
price of possible ruin. Most engineers are risk
adverse, and would prefer to eliminate the

+ hisp:/icelnorthwestern.eduinetiogo.

In highly turbulent environments, seeking
optimality is unjustified. In fact, optimal
designs are inherently fragile. Robust
solutions should be sought instead. This
can be accomplished not by maximising
(arbitrary) objective functions but by
accepting compromises in terms of
performance and seeking simpler solutions
to problems.
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Q&A Session

Using the Q&A tool, please submit any
guestions you may have for our panel.
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Thank you!

matthew.ladzinski@nafems.org




