Isogeometric Analysis Toward Unification of Computer Aided Design and Finite Element Analysis

T.J.R. Hughes

Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin

Collaborators:

I. Babuska, Y. Bazilevs, L. Beirao da Veiga, D. Benson, V. Calo, J.A. Cottrell, T. Elguedj, J. Evans, H. Gomes, S. Lipton, A. Reali, G. Sangalli, M. Scott, T. Sederberg, J. Zhang

Outline

- Isogeometric analysis
- NURBS
- Structures
- Vibrations
- Wave propagation
- Nonlinear solids
- Fluids and fluid-structure interaction
- Phase-field modeling
- Cardiovascular simulation
- Design-to-analysis
- T-splines
- Conclusions

Isogeometric Analysis

- Based on technologies (e.g., NURBS) from computational geometry used in:
 - Design
 - Animation
 - Graphic art
 - Visualization

- Includes standard FEA as a special case, but offers other possibilities:
 - Precise and efficient geometric modeling
 - Simplified mesh refinement
 - Smooth basis functions with compact support
 - Superior approximation properties
 - Integration of design and analysis

Isogeometric Analysis (NURBS, T-Splines, etc.)

FEA

h-, p-refinement

k-refinement

B-spline Basis Functions

•
$$N_{i,0}(\xi) = \begin{cases} 1 & \text{if } \xi_i \leq \xi < \xi_{i+1}, \\ 0 & \text{otherwise} \end{cases}$$

• $N_{i,p}(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p-1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi} N_{i+1,p-1}(\xi) \end{cases}$

Quadratic (*p*=2) basis functions for an *open, non-uniform knot vector:*

 $\Xi = \{0,0,0,1,2,3,4,4,5,5,5\}$

Further *h*-refined Curve 4.5 4.25 4.75 4 5 3.75 2.75 3 3.25 2.25 2.25 3.5 0 1.75 0.25 0.75 ₁ 1.25 0.5 - control points - knots Quadratic basis

Cubic *p*-refined Curve

Quartic *p*-refined Curve

NURBS Non-Uniform Rational B-splines

Circle from 3D Piecewise Quadratic Curves

Mesh

Variation Diminishing Property

Finite Element Analysis and Isogeometric Analysis

– (Compact support
•	Partition of unity
• ,	Affine covariance
• 1	Isoparametric concept
•	Patch tests satisfied

Structural Analysis

 Isoparametric NURBS elements exactly represent all *rigid body motions* and *constant strain states*

Hyperboloidal Shell

Thickness Discretization

View 1

(displacement amplification factor of 10)

View 2

(displacement amplification factor of 10)

Vibration Analysis

NASA Aluminum Testbed Cylinder (ATC)

NASA ATC Frame

NASA ATC Frame and Skin

First Rayleigh Mode

Cells 2.33 - 1.86 - 1.4 - 0.93 - 0.465

-3.94e-05

-0.465

-0.93

-1.4

-1.86

-2.33

x-displacement

Vibration of a Finite Elastic Rod with Fixed Ends

Problem:

$$\begin{cases} u_{xx} + \omega^2 u = 0 & \text{for} \quad x \in (0, 1) \\ u(0) = u(1) = 0 \end{cases}$$

Natural frequencies:

 $\omega_n = n\pi$, with $n = 1, 2, 3, \dots$

Frequency errors:

$$\omega_n^h / \omega_n$$

Comparison of FEM (*p*-refinement) and NURBS (*k*-refinement) Frequency Errors

Comparison of FEM (*p*-refinement) and NURBS (*k*-refinement) Frequency Errors

Comparison of FEM (*p*-refinement) and NURBS (*k*-refinement) Frequency Errors

Comparison of FEM (*p*-refinement) and NURBS (*k*-refinement) Frequency Errors

Nonlinear Solids

Incompressibility:	B and	F methods

Linear (sum)	Nonlinear (product)
B	$F = \partial \phi / \partial X$
$oldsymbol{B}^{ ext{dil}}$	$oldsymbol{F}^{ ext{dil}} = oldsymbol{J}^{1/3}oldsymbol{I}$ $oldsymbol{J} = \det oldsymbol{F} = \det oldsymbol{F}^{ ext{dil}}$
$\boldsymbol{B}^{\text{dev}} = \boldsymbol{B} - \boldsymbol{B}^{\text{dil}}$	$\boldsymbol{F}^{\text{dev}} = (\boldsymbol{F}^{\text{dil}})^{-1} \boldsymbol{F}$ $= \boldsymbol{F} (\boldsymbol{F}^{\text{dil}})^{-1}$
$ar{B}^{dil}$ (improved)	$\overline{F}^{dil} = (\overline{J^{1/3}})I$ (improved) (e.g., interpolated from reduced quadrature pts.)
$\overline{m{B}} = m{B}^{dev} + \overline{m{B}}^{dil}$	$\vec{F} = F^{\text{dev}} \vec{F}^{\text{dil}}$ $= F(F^{\text{dil}})^{-1} \vec{F}^{\text{dil}}$ $= FJ^{-1/3} I(J^{1/3})I$ $= (J^{1/3} / J^{1/3})F$

P. Flory 1960's, T. Hughes 1970's, J. Simo 1980's, D.R.J. Owen 2000's

Infinite plate with a circular hole

Relative error in the L^2 norm of stress

Torus subjected to a vertical pinching load

The exact geometry is represented by quadratic NURBS

The mesh consists of 4 x 16 x 4 elements

R = 10 m κ = 2.8333 × 10³ MPa μ = 5.67 MPa (*v* = 0.4998) *r* = 8 m *p* = 0.195 MPa

$\sigma_{_{zz}}$ stress with and without $\,ar{F}\,$

Fluids and Fluid-Structure Interaction

Balloon Containing an Incompressible Fluid

From Wall '06, Tezduyar '07

Balloon Containing an Incompressible Fluid

- Quadratic NURBS for both solid and fluid
- Boundary layer meshing

Balloon Containing an Incompressible Fluid

Phase Field Modeling: Cahn-Hilliard Equation

C¹ Quadratic NURBS

Cardiovascular Research

- Patient-specific mathematical models of major arteries and the heart
- Cardiovascular Modeling Toolkit
 - Abdominal aorta
 - LVADs: Left Ventricular Assist Devices (R. Moser)
 - Aneurysms
 - Vulnerable plaques and drug delivery systems
 - Heart

Medical Imaging: Computed Tomography (CT)

Abdominal Aorta

Mapping onto a patient-specific arterial cross-section

Left Ventricular Assist Device (LVAD) with Ascending Aortic Distal Anastomosis

Jarvik 2000 and Schematic of Descending Aortic Distal Anastomosis

Data from a lumped-parameter model of the CV system with assist

Design to Analysis

• Idea:

Extract surface geometry file from CAD modeling software and use it directly in FEA software

• Goal:

Bypass mesh generation

 Test cases: Import NURBS surface files directly into LS Dyna for Reissner-Mindlin shell theory analysis

Pinched Cylinder: Problem Definition

Pinched Cylinder

Quadratic NURBS surface models

Pinched Cylinder

Quintic NURBS surface models

Pinched Cylinder

Convergence of NURBS surface models in LS Dyna

S. Kolling, Mercedez Benz

Problems with NURBS-based Engineering Design

- Water-tight merging of patches
- Trimmed surfaces

T-splines

Unstructured NURBS Mesh

Reduced Number of Control Points

Water tight merging of patches

Hemispherical Shell with Stiffener

Hemispherical Shell with Stiffener

Locally Refined Meshes

Hemispherical Shell with Stiffener

Vertical displacement (smooth)

Von Mises stress (singular)

Conclusions

- Isogeometric Analysis is a powerful generalization of FEA
 - Precise and efficient geometric modeling
 - Mesh refinement is simplified
 - Smooth basis functions with compact support
 - Numerical calculations are very encouraging
 - Higher-order accuracy and robustness
 - It may play a fundamental role in *unifying* design and analysis

Philosophy:

Geometry is the foundation of analysis

Computational geometry is the future of computational analysis

Book in progress:

Isogeometric Analysis: Toward Unification of CAD and FEA

