

2020 Vision of Engineering Analysis and Simulation October 29 - 31, 2008 | Hampton, Virginia

Multiphysics Simulation using Direct Coupled-Field Element Technology

Stephen Scampoli ANSYS, Inc.

Agenda

- Multiphysics Overview
- Direct Coupled-Field Elements
- Applications
 - Piezoelectricity
 - Thermal-Electric Coupling
 - Electroelasticity
 - Structural-Thermal-Electric Coupling
- Conclusions
- Questions and Answers

Thermoelectric Generator

Multiphysics - Why Consider It?

- You can't afford to ignore coupled physics when:
 - The real world is a multiphysics world
 - Your design depends on coupled physical phenomena
 - You are faced with small error margins
 - Physical testing is too costly

Innovative companies are moving beyond single physics analysis

Methods of Coupling Physics

- Direct Coupling
 - A single analysis employing a coupledfield element containing all the necessary DOFs to solve the coupled-field problem.

Direct Coupling

- Element-level coupling
- Highly coupled physics
- Single model & mesh

- Load Transfer
 - Two or more analysis are coupled by applying results from one analysis as loads in another analysis.

Load Transfer

- Sequential solution
- Separate model & mesh
- Separation of expertise

Direct Coupled-Field Element

- A finite element that couples the effects of interrelated physics within the element matrices or load vectors, which contain all necessary terms required for the coupled physics solution.
- Strong (matrix) or weak (sequential) coupling
- Many industry applications

DOF: UX, UY, UZ, TEMP, VOLT, (AZ)

Strong (Matrix) Coupling

• Finite element matrix equation:

$$\begin{bmatrix} \begin{bmatrix} \mathbf{K}_{11} \end{bmatrix} & \begin{bmatrix} \mathbf{K}_{12} \end{bmatrix} \\ \begin{bmatrix} \mathbf{K}_{21} \end{bmatrix} & \begin{bmatrix} \mathbf{K}_{22} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \{ \mathbf{X}_1 \} \\ \{ \mathbf{X}_2 \} \end{bmatrix} = \begin{bmatrix} \{ \mathbf{F}_1 \} \\ \{ \mathbf{F}_2 \} \end{bmatrix}$$

- The coupling is accounted for by the offdiagonal matrices [K₁₂] and [K₂₁].
- Provides for a coupled solution in one iteration for linear problems
- Examples: Piezoelectricity, Seebeck effect, thermoelasticity

Weak (Sequential) Coupling

• Finite element matrix equation:

 $\begin{bmatrix} \begin{bmatrix} K_{11}(\{X_1\},\{X_2\}) \end{bmatrix} & \begin{bmatrix} 0 \end{bmatrix} \\ \begin{bmatrix} 0 \end{bmatrix} & \begin{bmatrix} K_{22}(\{X_1\},\{X_2\}) \end{bmatrix} \end{bmatrix} \begin{bmatrix} \{X_1\} \\ \{X_2\} \end{bmatrix} = \begin{bmatrix} \{F_1(\{X_1\},\{X_2\}) \} \\ \{F_2(\{X_1\},\{X_2\}) \} \end{bmatrix}$

- The coupled effect is accounted for in the dependency of [K₁₁] and {F₁} on {X₂} as well as [K₂₂] and {F₂} on {X₁}.
- At least two iterations are required to achieve a coupled response.
- Examples: Joule heating, electric forces, piezoresistivity

Applications for Coupled-Field Elements

- Piezoelectric
 - Transducers, resonators, sensors and actuators, vibration control
- Piezoresistive
 - Pressure sensors, strain gauges
- Thermal-electric
 - Wires, busbars, Peltier coolers
- Thermoelastic damping
 MEMS resonators
- Electroelastic
 - Actuators, artificial muscle
- Coriolis Effect
 - Quartz angular velocity sensors

Piezoelectric Analysis

 In a piezoelectric analysis, the structural and electrostatic fields are coupled by the piezoelectric constants [e]:

- [e] piezoelectric matrix
- {T} stress vector
- {S} elastic strain vector
- [c] elastic stiffness

- {D} electric flux density
- {E} electric field intensity
- $[\varepsilon]$ dielectric permittivity

Piezoelectric Finite Element Equations

Strong (Matrix) Coupling

$$\begin{bmatrix} K_{UU} & K_{UV} \\ K_{UV}^{T} & -K_{VV} \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix} + \begin{bmatrix} C_{UU} & 0 \\ 0 & -C_{VV} \end{bmatrix} \begin{bmatrix} \dot{U} \\ \dot{V} \end{bmatrix} + \begin{bmatrix} M_{UU} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \ddot{U} \\ \ddot{V} \end{bmatrix} = \begin{bmatrix} F \\ Q \end{bmatrix}$$

- U and V are strongly coupled piezoelectric matrices $[K_{IIV}]$ and $[K_{IIV}]^T$
- Symmetric Matrices
- Static, Harmonic, Transient

Element matrices:

- K_{IIII} structural stiffness
- K_{VV} dielectric permittivity
- K_{UV} piezoelectric coupling
- C_{uu} structural damping
- C_{VV} dielectric dissipation
- M_{uu} mass

Piezoelectric Fan Example

- Piezoelectric Fan
 - Spot cooling
 - Low magnetic permeability
 - Driven by piezoelectric bimorph

Image courtesy of Piezo Systems, Inc.

NAFEMS 2020 Vision of Engineering Analysis and Simulation

Piezoelectric Fan Example

- Results
 - Fan driven at resonance
 - 120 Volts at 60 Hz

NAFEMS 2020 Vision of Engineering Analysis and Simulation

5.92

Thermal-Electric Analysis

 In a thermoelectric analysis, the thermal and electric fields are coupled by the Joule heat Q^J and Seebeck coefficients [α]:

Thermal-Electric Finite Element Equation

Matrix and/or Load Vector Coupling

$$\begin{bmatrix} \mathsf{K}_{\mathsf{T}\mathsf{T}} & \mathbf{0} \\ \mathsf{K}_{\mathsf{V}\mathsf{T}} & \mathsf{K}_{\mathsf{V}\mathsf{V}} \end{bmatrix} \begin{bmatrix} \mathsf{T} \\ \mathsf{V} \end{bmatrix} + \begin{bmatrix} \mathsf{C}_{\mathsf{T}\mathsf{T}} & \mathbf{0} \\ \mathbf{0} & \mathsf{C}_{\mathsf{V}\mathsf{V}} \end{bmatrix} \begin{bmatrix} \dot{\mathsf{T}} \\ \dot{\mathsf{V}} \end{bmatrix} = \begin{bmatrix} \mathsf{Q} + \mathsf{Q}^{\mathsf{P}} + \mathsf{Q}^{\mathsf{J}} \\ \mathsf{I} \end{bmatrix}$$

- T an V Coupling
 - Matrix
 - Seebeck K_{VT}
 - Load Vector
 - Joule Q^J Load Vector
 - Peltier Q^P Load Vector
- Symmetric Joule Heating
- Unsymmetric Seebeck

Element matrices:

- $K_{\tau\tau}$ thermal conductivity
- K_{vv} electric conductivity
- K_{vT} Seebeck coupling
- $C_{\tau\tau}$ specific heat damping
- C_{vv} dielectric damping

Thermoelectric Cooler Example

- Thermoelectric Cooler
 - Thermal-electric coupling
 - n-type and p-type semiconductors

Cold Side (Heat Absorbed) Image courtesy of Marlow Industries Ground Hot Side (Heat Rejected)

NAFEMS 2020 Vision of Engineering Analysis and Simulation

Thermoelectric Cooler Example

- Thermoelectric Results
 - Thermal gradient in Peltier blocks

Electroelastic Analysis

 In an electroelastic analysis, structural and electrostatic fields are coupled by an electric force {F^e}:

Electroelastic Finite Element Formulation

Load Vector (Weak) Coupling

$$\begin{bmatrix} \mathsf{K}_{\mathsf{U}\mathsf{U}} & \mathsf{0} \\ \mathsf{0} & \mathsf{K}_{\mathsf{V}\mathsf{V}} \end{bmatrix} \begin{bmatrix} \mathsf{U} \\ \mathsf{V} \end{bmatrix} + \begin{bmatrix} \mathsf{C}_{\mathsf{U}\mathsf{U}} & \mathsf{0} \\ \mathsf{0} & \mathsf{C}_{\mathsf{V}\mathsf{V}} \end{bmatrix} \begin{bmatrix} \dot{\mathsf{U}} \\ \dot{\mathsf{V}} \end{bmatrix} + \begin{bmatrix} \mathsf{M}_{\mathsf{U}\mathsf{U}} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathsf{U}} \\ \ddot{\mathsf{V}} \end{bmatrix} = \begin{bmatrix} \mathsf{F} + \mathsf{F}^{\mathsf{e}} \\ \mathsf{Q} \end{bmatrix}$$

- U and V are couple through the electric force load vector {F^e} Element matrices:
- Iterative Solution
- Symmetric Matrix

- K_{uu} structural stiffness
- K_{VV} dielectric permittivity
- C_{UU} structural damping
- C_{VV} dielectric dissipation

- Linear Actuator
 - Applied voltage between the compliant electrodes
 - Compresses based on electrostatic pressure

Image courtesy of Federico Carpi, University of Pisa

Folded Sheet of Dielectric Elastomer

NAFEMS 2020 Vision of Engineering Analysis and Simulation

• Finite Element Model

Comparison with Test Data

Excellent correlation to the test data to about 7% strain. Model is stiffer than actual device between 7% and 10% strain.

Structural-Thermal-Electric Coupling

 A structural-thermal-electric analysis including thermal expansion, piezocaloric, Joule heating, Seebeck/Peltier and piezoresistive effects:

NAFEMS 2020 Vision of Engineering Analysis and Simulation

Finite Element Formulation

Matrix/Load Vector Coupling

 $\begin{bmatrix} \mathsf{K}_{UU} & \mathsf{K}_{UT} & \mathbf{0} \\ \mathbf{0} & \mathsf{K}_{TT} & \mathbf{0} \\ \mathbf{0} & \mathsf{K}_{VT} & \mathsf{K}_{VV}(U) \end{bmatrix} \begin{bmatrix} \mathsf{U} \\ \mathsf{T} \\ \mathsf{V} \end{bmatrix} + \begin{bmatrix} \mathsf{C}_{UU} & \mathbf{0} & \mathbf{0} \\ -\mathsf{T}_0\mathsf{K}^{\mathsf{T}}_{UT} & \mathsf{C}_{TT} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathsf{C}_{VV} \end{bmatrix} \begin{bmatrix} \dot{\mathsf{U}} \\ \dot{\mathsf{T}} \\ \dot{\mathsf{V}} \end{bmatrix} + \begin{bmatrix} \mathsf{M}_{UU} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathsf{U}} \\ \ddot{\mathsf{T}} \\ \ddot{\mathsf{V}} \end{bmatrix} = \begin{bmatrix} \mathsf{F} \\ \mathsf{Q} + \mathsf{Q}^{\mathsf{J}} + \mathsf{Q}^{\mathsf{P}} \\ \mathsf{I} \end{bmatrix}$

- U and T are strongly coupled by thermoelastic coupling matrices K_{UT} and C_{TU}
- T and V are strongly coupled by Seebeck coefficient matrix K_{VT} and weakly coupled by Peltier and Joule load vectors Q^J Q^P
- U and V are weakly coupled by the piezoresistive coefficients K_{VV}(U)
- Unsymmetric Matrix

Element matrices: K_{UU} - structural stiffness K_{TT} - thermal conductivity K_{UT} - thermoelastic coupling K_{VV} - electric conductivity K_{VT} - Seebeck coupling C_{UU} - structural damping C_{TT} - specific heat damping C_{VV} - dielectric damping M_{UU} - mass T_0 - absolute reference temperature

Thermal-Electric Actuator Example

SEM image courtesy of Victor Bright, University of Colorado at Boulder

NAFEMS 2020 Vision of Engineering Analysis and Simulation

Conclusions

- Direct Coupled Field Elements
 - Advantages
 - Ease of use
 - One element type
 - One finite element model
 - -One set of results
 - Robust for nonlinear coupled-field solutions
 - Nonlinear geometric effects
 - Disadvantages
 - Large model sizes
 - Can create unsymmetric matrices

DOF: UX, UY, UZ, TEMP, VOLT, (AZ)

