

A New Standard for Simulation Engineers

Agenda

- PSE Overview
- Certification, or an Educational Framework?
- How is the Program Used Today?
- Certification | How does it Work?
- Governance
- Foundation for NAFEMS Activities
- Q&A

PSE Overview

PSE Competencies

PSE (Professional Simulation Engineer) defines the competencies that good simulation engineers should possess.

- The scheme consists of a database of thousands of detailed competency statements
- Peer-reviewed over several years by experts

These competencies are the foundation for the PSE Competency Tracker and PSE Certification.

PSE Competence Statements

FEAco12 - Outline a common method employed to solve the large sets of sparse symmetric matrices common in FEA.

CFDco2 - Compare and contrast the finite difference, finite volume and finite element discretisation methods.

NGECco9 - Discuss the limitations of contact algorithms available in a finite element system.

MASco5 - Discuss the general issue of scatter in material properties relevant to your analysis and simulation and how this is allowed for.

PSE Background

- CCOOPS Certification of Competencies in the Power and Pressure Systems Industry throughout Europe
 - Project launched with ½ Million Euro Funding under the EU Leonardo da Vinci Programme
- EASIT² Engineering Analysis Simulation Innovation Transfer² European project 18 Technical Areas
- PSE Professional Simulation Engineer
 - Officially launched at the 2013 Salzburg NAFEMS World Congress
 - 26 Technical Areas

Technical Areas

- Mechanics, Elasticity and Strength of Materials*
- Core Finite Element Analysis*
- Fundamentals of Flow, Mass & Heat Transfer*
- Core Computational Fluid Dynamics*
- Materials for Analysis and Simulation
- Fatigue
- Flaw Assessment and Fracture Mechanics
- Nonlinear Geometric Effects and Contact
- Beams, Membranes, Plates and Shells
- Dynamics and Vibration
- Optimisation
- Plasticity
- Thermo-Mechanical Behaviour
- General Analysis Management

- Verification and Validation
- PLM Integration and CAD-CAE Collaboration
- Simulation Process and Data Management
- Buckling and Instability
- Multi-physics Analysis
- Composite Materials and Structures
- Creep and Time-Dependency
- Multi-Scale Analysis
- Probabilistic Analysis
- Noise, Acoustics and Vibro-Acoustics
- Electromagnetics
- Multi-body Dynamics

Technical Areas

Certification, or an Educational Framework?

Educational Framework

Plan, Track & Manage Competency

The Competency Tracker can be used to:

- Access PSE Competencies Online
- Browse Educational Resources
- Track & Manage Competency

Certification Scheme

Gain recognition for achievement of competency

• Independent Assessment by Industry Experts

How to Access the Competency Tracker

Register for Access: https://www.psecompetencytracker.org /

Complete Tracker Available to:

- PSE Certification Applicants
- NAFEMS Members

As an anonymous user you will be able to browse the PSE Competencies and educational resources. You will not be able to access the tracking and management functionality of the PSE Competency

Tracker. To use these features you must register/log in.

Click here to access the Competency Tracker

Access to the PSE Competency Tracker is exclusive to NAFEMS members and those applying for PSE Certification.

NAFEMS members can register here.

- 1		
	-D PLASkn9 - Identify the extent to which your application software allows modification of nonlinear material solution parameters.	*
	- D PLASco1 - Discuss salient features of the inelastic response of metals.	
	PLASco2 - Explain the terms Isotropic Hardening, Kinematic Hardening and Rate Independency.	
	- 🗋 PLASco3 - Discuss the role of the Hydrostatic and Deviatoric Stress Components in yield criteria for isotropic, polycrystalline solids.	
	- 🗋 PLASco5 - Explain the terms First Yield Load, Ultimate Load and Plastic Instability Load.	
	- 🗋 PLASco6 - Discuss the use of the Twice Elastic Slope Criterion and explain why this is sometimes used.	
	- 🔄 PLASco7 - Explain the phenomenon of Shakedown and define the term Shakedown Load.	
	- D PLASco8 - Contrast the terms Ratchetting and Low Cycle Fatigue.	
	- PLASco9 - Explain the Upper and Lower Bound Theorems.	
	— PLASco10 - Discuss the effects of stress singularities at re-entrant corners on limit load.	
	- 🗋 PLASco11 - Explain how plastic effects in a Finite Element system are commonly handled as a series of incremental iterative linear analyses and contrast the Variable Stif	
	- 🗋 PLASco12 - Explain, in general terms, the function of the Mises Flow Rule or Prandtl-Reuss Equations, used in a finite element solver.	
	- PLASco13 - Outline how the cumulative and incremental displacements, total strains, elastic strains, elastic straiss and plastic strains are related in the finite elemen	
	- PLASco14 - Illustrate typical examples of Local Plastic Deformation and Gross Plastic Deformation.	-

Competence Statement

Resource References Competence Record

COMPETENCE STATEMENT

Code: PLASco2 Cognitive area: Comprehension NAFEMS level: Standard EQF level: 7

Competency statement: Explain the terms Isotropic Hardening, Kinematic Hardening and Rate Independency.

- D PLASkn9 - Identify the extent to which your application software allows modification of nonlinear material solution parameters.	
PLASco1 - Discuss salient features of the inelastic response of metals.	
PLASco2 - Explain the terms Isotropic Hardening, Kinematic Hardening and Rate Independency.	
- PLASco3 - Discuss the role of the Hydrostatic and Deviatoric Stress Components in yield criteria for isotropic, polycrystalline solids.	
- PLASco4 - Explain the terms Limit Load and Plastic Collapse Load and explain why the latter is often a misnomer.	
- D PLASco5 - Explain the terms First Yield Load, Ultimate Load and Plastic Instability Load.	
- D PLASco6 - Discuss the use of the Twice Elastic Slope Criterion and explain why this is sometimes used.	
- D PLASco7 - Explain the phenomenon of Shakedown and define the term Shakedown Load.	
- D PLASco8 - Contrast the terms Ratchetting and Low Cycle Fatigue.	
PLASco9 - Explain the Upper and Lower Bound Theorems.	
- D PLASco10 - Discuss the effects of stress singularities at re-entrant corners on limit load.	
- D PLASco11 - Explain how plastic effects in a Finite Element system are commonly handled as a series of incremental iterative linear analyses and contrast the Variable Stif	
- D PLASco12 - Explain, in general terms, the function of the Mises Flow Rule or Prandtl-Reuss Equations, used in a finite element solver.	
- D PLASco13 - Outline how the cumulative and incremental displacements, total strains, elastic strains, elastic stresses and plastic strains are related in the finite elemen	
 - D PLASco14 - Illustrate typical examples of Local Plastic Deformation and Gross Plastic Deformation.	-

Competence Statement Resource References

ferences Competence Record

RESOURCE REFERENCES FOR THE COMPETENCY STATEMENT

Туре	Code	Resource	Reference	Link
Book	PLASref11	An Introduction to the Use of Material Models in FE, Nawal K. Prinja & Anup K. Puri, NAFEMS Ltd, 2005, ISBN-1: 875376069	Chapter 5.3 pp. 21- 23	ഷ
Book	PLASref11	Understanding Non-linear Finite Element Analysis through Illustrative Benchmarks, A A Becker, NAFEMS Ltd, ISBN 1-874376-35-2, 2001.	Chapter 2, pp. 27	ഷ

- DPLASkn9 - Identify the extent to which your application software allows modification of nonlinear material solution parameters.	*
— PLASco1 - Discuss salient features of the inelastic response of metals.	
PLASco2 - Explain the terms Isotropic Hardening, Kinematic Hardening and Rate Independency.	
- PLASco3 - Discuss the role of the Hydrostatic and Deviatoric Stress Components in yield criteria for isotropic, polycrystalline solids.	
— PLASco4 - Explain the terms Limit Load and Plastic Collapse Load and explain why the latter is often a misnomer.	
- D PLASco5 - Explain the terms First Yield Load, Ultimate Load and Plastic Instability Load.	
- PLASco6 - Discuss the use of the Twice Elastic Slope Criterion and explain why this is sometimes used.	
- PLASco7 - Explain the phenomenon of Shakedown and define the term Shakedown Load.	
— PLASco8 - Contrast the terms Ratchetting and Low Cycle Fatigue.	
- PLASco9 - Explain the Upper and Lower Bound Theorems.	
— PLASco10 - Discuss the effects of stress singularities at re-entrant corners on limit load.	
- PLASco11 - Explain how plastic effects in a Finite Element system are commonly handled as a series of incremental iterative linear analyses and contrast the Variable Stif	
- PLASco12 - Explain, in general terms, the function of the Mises Flow Rule or Prandtl-Reuss Equations, used in a finite element solver.	
- PLASco13 - Outline how the cumulative and incremental displacements, total strains, elastic strains, elastic straiss and plastic strains are related in the finite elemen	
- PLASco14 - Illustrate typical examples of Local Plastic Deformation and Gross Plastic Deformation.	-

Competence Statement Resource References Competence Record

Status: 💿 Achieved 🤇	Not Achieved	Method of achieveme	nt: Self evaluation	•	Date: 29/04/15
Comments:					
Read publication confidently.	ns found in	the "Resource F	Reference" sect	ion and can	discuss the terms
Also attended Ve	endor traini	ng course on Ma	aterial Plastic	ity where t	nis topic was covered,

INDIVIDUAL PSE COMPETENCY REPORT Person: Symington, Ian Id: pse-127 Email address: ian.symington@nafems.org Date: April 29, 2015 TECHNICAL AREA OVERALL COMPETENCY RECORD PROGRESS CHART Code: FEA Status: Achieved Title: Finite Elements Analysis (Core Module) Achievement method: Self evaluation Level: Expert Date: 28/05/14 22:00 show/hide details TECHNICAL AREA OVERALL COMPETENCY RECORD PROGRESS CHART Code: MESM Status: Not achieved Title: Mechanics, Elasticity and Strength of Materials show/hide details

Independent Assessment of PSE Competencies Resulting in a Recognised Certificate

- Multi-level certification scheme that recognises achievement of PSE competencies
- Independently assessed by NAFEMS
- Online Application via NAFEMS website

Multi-Level Certification

Competencies can be claimed at Entry, Standard and Advanced Level

Entry

- Employs available software tools in an effective manner
- Able to work in a supervised capacity
 when provided with clear guidelines
- Doesn't take on general tasks
 without supervision
- Typically applies to trainees and/or technician level staff working under the supervision of a person(s) with appropriate competence who will sign off the results

Standard

- Has sufficient knowledge and comprehension of theory to employ available software tools in a safe and effective manner
- Able to work in an independent manner without supervision
- Conducts appropriate checks on results
- Is aware of their own limitations when faced with new or novel problems
- Observes professional practices

Advanced

- Can take on a range of complex, novel tasks without supervision
- Plans analysis strategies and validation studies
- Provides effective advice and guidance

How is the PSE being used today

By Individuals...

- Used to differentiate themselves
- Used for professional development
- Used as proof of competence to current and future employers
- Steady uptake in interest in PSE from individuals

By Companies...

- As an competence management system
- A clear way to demonstrate the company's commitment to quality standards
- A formal record of employee competency and training satisfying the requirements of ISO 9001
- Creating and maintaining competitive edge

Examples of How PSE is being used today

- Individuals
 - Using 'out of the box' PSE

PSE Competence Statements	\checkmark
PSE Competence Tracker	\checkmark
PSE Certification Assessment	\checkmark

Examples of How PSE is being used today

- High Tech Electronics Manufacturer
 - Managing Competence of Engineering Designers
 - Restrict access to simulation tools
 - > 80 engineers through process

Examples of How PSE is being used today

- Large Aerospace Manufacturer
 - Managing Competence of Analysis Engineers
 - Incorporated into companies own Competency Management Process

Certification | How Does it Work?

Certification – Application

- Apply Online: http://www.nafems.org/professional_development/certification/
- Application Fee: £150 / \$230 / €210

NAFEN	IS		🚔 0 Items - £0.00	Logged in as my nafema log o	ut	
Home About Blog	Join NWC15	Events E-learni	ng Professional Development	Publications	Members Area	Contact
NAFEMS Training PSE Competer you are here > professional develop		Certification			search	advanced search
About Testimonials Application Information Apply Online My PSE Application FAQs Credits PSE Code of conduct		ertification		analysta		SE FICATION
	acquired throug the internationa	hout their professional l association of the en	community to demonstrate com career. Independently assessed by gineering analysis, modelling and s dividuals to gain recognition for the	NAFEMS, imulation	Apply O	nline

Certification – Guidance

• Guidance information is available to download from website

Certification – Application

• The application is stored online and can be saved and modified at a later date

NA	FEMS	5			🚔 0 lte	ems - £0.00	Logged my nafe	linas emslogo	ut	
Home About B	log Jo	oin NWC15	Events	E-learning	Professional [Developmer	nt Public	ations	Members Area	a Contact
NAFEMS Training PSE (Competenc	y Tracker PSI	E Certificatio	n					search	Q
you are here 🄉 professional	developme	nt > pse certifica	ation $ angle$ my p	ose application	\rangle					advanced search
About		Personal Details	Referees Edu	ication Profess	ional Qualifications	Training C	Career Summa	ry Simula	tion Experience (Competencies Claimed
Testimonials										
Application Information		Your Pe	rsonal D	etails		Yo	ur Currer	nt Emp	loyment	
Apply Online My PSE Application		Ti	itle ^{Mr}		?		Position			?
FAQs			rst lan			Orga	anisation	NAFEMS	3	?
Credits		Name					Address	Springwo	bod	?
PSE Code of conduct		Surnai	me Syming	gton						
		Hoi		Cottages	?			Booths F	'ark	
		Δddre	222					Chalford	Dood	

Certification – The Process

Certification – The Interview

- Duration: 45 minutes
- Location: Webex
- Two PSE Assessors and the PSE administrator in attendance
- Open questions about the candidates background & simulation experience
- Specific questions relating to the PSE competencies

Governance

Governance

The Foundation for NAFEMS activities

Future developments

- PSE feeds into "Academic Course Approval"
 - Ensure that graduates possess the skills that industry require
- Associate all NAFEMS training courses with the competence statements
- Working groups tasked with developing the educational resources

Find out more at www.nafems.org

