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Abstract  

Following an artificial evolution paradigm the Re-Imagining Engineering 
Design (RIED) Programme is developing new design methods and systems to 
enable superfast design of complex engineering problems. The solution engine 
called the “RIED Engine” provides concept solutions which can account for 
manufacturing constraints as well as complex performance constraints such as 
buckling. The ethos in RIED is to develop key responses to a given state of 
stress or temperature, for example, and then evolve large populations of these 
over many generations. The responses are stored as a neural network which is 
an analogy for gene regulation in nature. The neural network effectively 
contains the instructions to generate the final shape and form of the design. An 
engineering tool chain can then be used to generate simulation or 
manufacturing models as needed for evaluation or can even in some 
circumstances provide a detailed model-based definition for manufacture. 

1. Background 

The production of sustainable products and processes, especially the larger, 
energy hungry engineered systems in transport and infrastructure, is becoming 
increasingly complex. These systems no longer operate in isolation and the 
trade-offs needed are ever more inter-twined. Existing design systems can no 
longer cope with these many faceted problems, resulting in restricted design 
spaces that reduce any opportunity for the innovation needed. In contrast, 
natural systems deal with such complex trade-offs by shifting their focus to 
responding locally to inputs and essentially evolving that local response over 
long time periods. The result is that organisms adjust their shape and size to 
account for the local conditions they encounter in the natural environment. 
Successful species are those groups that can best respond and adapt to the 
environment, and these are not necessarily the best in the sense of any given 
attribute, like speed or height, at any given time. It is fundamentally about 
change and rate of change. In contrast, the engineering design process typically 
develops solutions and choses the absolute best in a given scenario with rates 



of change used as guides rather than being the focus of the design decision. 
The potential of processes which mimic the evolution of natural systems has 
long been recognised in engineering design as exemplified by genetic 
algorithms which have been much used in design optimisation. However, these 
algorithms still focus on finding an optimal (or best) solution within current 
design system frameworks by overly restricting the design space.  

Building on a series of initiatives in engineering design three UK institutions 
(Queen’s Belfast, York and Loughborough) teamed up to form the Re-
Imagining Engineering Design (RIED) Programme[1]. With funding from the 
Engineering and Physical Sciences Research Council (EPSRC) and support 
from ten industrial partners RIED has been exploring alternative bio-inspired 
design systems and in particular novel approaches to artificial evolution more 
reflective of the neo-Darwinian synthesis than existing genetic algorithms. The 
result is the innovative generative design system outlined here. 

2. Generative Design & C-K Theory  

Recently there has been much interest in generative design systems to help find 
design concepts rapidly and to generate geometric representations of these to 
support concept selection and preparation for more detailed design. A number 
of commercial tools are now available and are proving useful in generating 
innovative design solutions in particular driven by topology optimisation. Such 
systems, while powerful, remain limited with significant post processing 
required and the formalisation of solutions via more conventional design 
processes is still needed to bring concepts through to manufacture. 

C-K Design theory is a concept of reasoning in design[2] which offers an 
opportunity to place modern digital design tools and capability in a context 
akin to Darwinian evolution. In C-K theory existing knowledge is used to 
explore new concepts and as understanding is generated from this concept 
exploration it generates new knowledge which can in turn be used for further 
exploration. As a process it behaves remarkably like Darwinian evolution, 
where each individual concept is analogous to an individual in a population, 
and new concepts akin to the new generation of a population. 

3. Artificial Evolution 

To create a design framework and process within this concept that matches 
closely to Darwinian evolution, the corresponding artificial evolution[3,4] 
process needs to be built around how the design concept changes and responds 
to its operational conditions. The genes in this system must now control the 
change, or rate of change, rather than the value of a design parameter. The 
consideration of change and response is powerful because it opens the 
opportunity to add design variables or new features (e.g. a flange) or introduce 
a topological change (e.g. a hole), all of which can expand the design space. 



In the case of such changes a generative process is required to generate the 
actual parameter value or design feature from which the state of stress, 
temperature etc can be calculated. This in turn requires that the overall process 
needs a growth stage, where an individual solution grows (or develops) just as 
a young organism would in nature[5]. This developmental stage offers 
significant opportunity for diversity in the population of solutions with every 
individual having different rates of response across all design parameters.  

4. Application of AI Technology 

The consequence of this diversity in the shape and form of solutions brings out 
the issue that design parameters have both direct and indirect consequences on 
the state of the system. Changes in one parameter affect many measured 
behaviours. In recognition that this mapping between design parameters and 
state (i.e. performance parameters) is many to many, it points towards a graph 
network as being a good representation of the system. 

The complexity of the mapping represented by the network is a natural fit for 
using machine learning algorithms to generate networks that can learn good 
responses to the given inputs. In this case the inputs to the network are the 
current state of stress, temperature etc and the outputs are the changes in design 
parameters such as thickness, modulus of elasticity etc. Moreover, because it is 
a network it easily accommodates other metrics, such as manufacturing 
parameters, which allows the network to learn how to change to accommodate 
say certain lengths of bars, or depth of cut. Complex trade-offs thus naturally 
emerge through individuals in the population of solutions. Figure 1 illustrates a 
sample of the type of solutions emerging in the case of a simple beam design. 
The minimum weight solution is shown and then some individuals form the 
population with different weight and waste measurements. 

 

 

 

 

 

 

Figure 1:  The original, baseline, beam is shown top left with the lightest solution from 
the RIED Engine top right.  The remainder are samples from the population with 
different weight and waste measurements.  All viable solutions are non-buckling. 



5. Example - Wing Rib 

The wing rib shown in Figure 2 shows an idealised scenario with the rib 
represented as being in simple shear. The rib is intended to be machined from 
plate such that the final structure is a machined framework. With many 
framework members being slender and loaded in compression it is necessary to 
include buckling performance in the design space, as well as considering the 
weight of the rib and the waste from the manufacturing process. The minimum 
weight design is less than 20% of the original rib plate but this wastes a lot of 
material in the machining process. However, the evolutionary system produces 
a range of designs in the solution space with weight reductions as much as 60% 
but with less than half the waste of the lightest design. 

 

 

 

 

 

 

 

Figure 2:  Design of an idealised wing rib under a simple shear load. The RIED 
solution along the bottom row of images can be contrasted with the topology 
optimised solution (not accounting for buckling) in the top right corner. 
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