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Abstract 

The use of Artificial Intelligence (AI) in engineering is expanding rapidly, with 
both in-house and commercial solutions now offering AI-assisted simulation 
(CFD and FE). However, its technology readiness level (TRL) is currently low 
and its application across aerospace industry needs better focus and 
coordination. Although great strides have been achieved with the use of Large 
Language Models (LLMs), the focus of this presentation is on the following 
areas: 

1) Improving the accuracy and speed of the CFD simulations  
2) Improving the performance, accelerating the design cycle (by analysis) & 

reducing lead-time 
3) Addressing the manufacturing variation issues related to the engine (e.g. 

test bed) performance 
4) More-time on the wing – end of life, residual life prediction and prognosis  

1. Introduction 

Over the past three decades, the use of advanced simulation tools coupled with 
high performance computing (HPC, mainly Intel chips) has played a major role 
in the design and validation of aero engines and their derivatives. The use of 
HPC allows highly complex CFD and FE analyses to be performed. Advances 
in numerical tools coupled with computing parallelisation have allowed large 
scale and high fidelity 3D modelling and faster computations. In a modern 
engine 1% fan efficiency can lead to 100s of millions of pounds cost reductions 
for a fleet of aircraft [1]. 

The aerodynamic design of the fan, multi-stage core compressors, turbines, 
combustion and aero-thermals, engine noise, installations and fluid systems can 
only be competitive through very advanced and complex CFD computations. 
Moreover from a mechanical integrity perspective, the engine extreme event and 
impact simulations require significant use of HPC. Over the past ten years, Rolls-
Royce has been pioneering test simulations, in particular, the replacement of core 
compressor strain gauge engine tests by analyses. These simulations reduce 
engine costs during development but require significant use of HPC. Over the 
past decade, significant progress has also been made in the development of 
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analysis automation, robust design [2, 3] and optimisation capabilities 
addressing the curse of dimensionality [4, 5]. However, these advances will bear 
little fruit in the absence of adequate computing capability and better, i.e. more 
accurate, simulation capability. 

In the discussion section of this paper, a definition of AI is first provided and the 
advantages of coupling it with CFD articulated, e.g. to produce a functional-
inspection of on-the-wing components, throughlife estimation - leading to more 
accurate shop visits and scheduling. Improvements to the CFD accuracy and its 
improvements to predict the gas temperature and the HP turbine blade stress, can 
also lead to increase component life & better robust design optimisation. 

2. Definition of AI 

AI is a multidisciplinary topic that enables 
machines, devices, and computers to think 
and make decisions in a way that would seem 
intelligent. AI helps machines and programs 
make smarter decisions by learning and 
improving in an iterative process based on 
the information they collect. However, as 
also shown in Figure 1, there are four 
different nested fields related to AI, a key 
question is which of these will benefit the 
turbomachinery industry most and in the 
short to medium term, e.g., more time on the 
wing, reduce design time, increase profit 
margin in years to come. 

Although, rapid advances in AI have created a frenzy of industry and academic 
activities, it has also increased concerns about ethics and its safety. Generative 
AI has recently captured popular imagination, creating text, images, audio and 
codes comparable to humans. 
3. CNN/UNET to support instant CFD   

Convolutional Neural Network (CNN) based on UNET [6] architecture for 
computer vision application has the potential to reproduce the flow field instantly 
in different aircraft engine components after an initial training with a large 
dataset of images which represent complex aerodynamic interactions. The 
classical usage of these networks can assist with the prediction of the size and 
binary segmentation of the flow features. This code has been modified to predict 
the RGB contours from a binary image. The model has been trained on a 
compressor intake under cross wind with a time-dependent solution, with the 
predictions closely resembling the ground truth (middle image) and with a 
Structural similarity index >99% (See Figure 2). 

 

Figure 1: AI Methodologies. 
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With 500 solutions as a training data set, the overall training time was 40 
minutes, and the code is able to detect flow features (ground vortex and lip 
separation) in real time. Afterwards, the same architecture has been applied to 
results from in-house RANS CFD simulations carried out on conventional high-
pressure turbine blades with service degradation (spallation and TBC loss). 
Sixty-seven blade sections were provided, and the dataset was augmented by 
using rotation, crop, roll and inversion, generating an additional 2800 images for 
the training. The resulting flow contours are shown in figure 3c.   

a)                                        b)                                                      c) 

Figure 3: HP Turbine blade – Mid-span Po contours shown a) reference stencil image of the 
aerofoil, b) Ground truth from hi-Fi CFD and c) is the AI predicted image. (Images NOT to 
scale) 

Typically, 85% - 90% of the images were used for training, the rest for validation 
and testing purposes. The CNN framework enabled the prediction of the two-
dimensional flow field including the presence of manufacturing defects and 
coolant holes. Further details can be found in the NextAIR EU Horizon R&T 
program. 

4. AI to Improve the Accuracy of CFD Simulations 

DNS in fluid mechanics, although regarded as very accurate and of the highest 
fidelity, is very expensive for realistic flight Reynolds numbers. Hence, the 
effect of turbulence is usually modelled, often at the expenses of accuracy, i.e. 
using RANS is still the most common approach in the aerospace industry. Hence, 
advanced Machine Learning algorithms (able to generate large amount of data) 

a)                                         b)                                           c)   

Figure. 2: Aspirated intake in ground proximity with a ground vortex ingested, a) Stencil of the 
distortion field b) Ground Truth from CFD computation C) AI generated flowfield using the 
modified UNET architecture 
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were combined with high-fidelity CFD calculations, to find correlations and 
relate turbulence behaviour to mean flow features [7]. The output of the process 
is a data-driven turbulence closure that can easily be implemented in a CFD 
solver (e.g. Hydra) and provide more accurate flow predictions, at the same cost 
of a traditional RANS calculation, See examples shown in Fig 4. Several 
closures were identified as part of this PhD research and most importantly, a 
framework was put in place to facilitate new derivations in the future [8]. 

While being very promising, several challenges remain. These are: a) generating 
high fidelity data for representative engine configurations b) blending together 
different models, or automatically selecting one over the other based on the type 
of flow (e.g., turbines, compressors, jets), c) extending the framework to 
turbulence modelling for URANS, d) further automating the framework to 
generate new turbulence closures, e) improving the machine learning algorithm, 
enforcing physical constraints.  The author & his colleagues will continue this 
R&D work through a newly started Horizon EU program called ROSAS [9]. 

5. Image segmentation using Borescope data 

Here, an industry standard code – Yolov8 (You only look Once) from Ultralytics 
is used [10]. A small dataset of 55 end-of-life blades was used for training and 
an additional 11 blades for testing. Using this CNN architecture, the code was 
able to rapidly predict the damaged sections of the blades, see figure 5. Advanced 
segmentation features such as SAHI (Slicing Aided Hyper Inference), where the 
images are sliced and the predictions are performed yielding better results.   

Figure 4: Automatic 
identifications of clusters based 
on flow characteristics (to train 
Structure of the neural network) 

 

 

a) the ML model to 
improve turbine wake 
prediction  

 

    

b) ML model to 
improve jet 
prediction 
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a)                                         b)                                               c)                                    

Figure 5: Video images of a borescope of a Turbine blade with areas of large damages 
identified for taking b) the code detects similar unseen damages c) this can be enhanced with 
additional AI software for TBC loss [10].. 

6. Conclusions 

The author has kept the enterprise wide usage of LLM like ChatGPT (and what 
it can do for engineering), and its link to Digital Twin out of the scope of this 
short paper. Focus has mainly been on HPC enabled AI applications and 
opportunities in aerothermal engineering. In the Author’s experience so far, the 
performance and the actual success of AI usage is very much related to four 
factors: 1) The hardware that they are run on, e.g. GPUs offer an order of 
magnitude speed up for most AI codes developed, thanks to the gaming industry 
exponential growth in the usage & graphic processing speed improvements. The 
amount of RAM memory and storage also plays a key role here 2) Availability 
of vast “good” data – Good refers to clean data where it is “consistent”, ideally 
noise free and clearly labelled and the meta data seamlessly made available to 
the user 3) Physics-based reasoning where the results are enhanced and agree 
with the well-known physical laws, such as thermodynamic laws, conservation 
of the mass, momentum and energy fluxes 4) Allowing expert knowledge to be 
injected to the solution, e.g. for turbomachinery, interesting facts are also 
available, like the flow in a single passage of stator or rotor should be periodic, 
a prediction of a flow which is not clearly periodic? needs reinforcement 
learning, other flow features like wakes, stagnation points, secondary-flows 
behavior are all well-known features to an expert aerodynamicist. 
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