
Physics-Informed Machine Learning for Wind Energy 
Applications 

Jincheng Zhang and Xiaowei Zhao 
The University of Warwick, UK 

Abstract 

Wake interactions in wind farms significantly impact power production and 
structural loads on wind turbines. Current numerical tools for wake prediction 
mainly fall into two categories: computational fluid dynamics (CFD) models, 
which are accurate but computationally expensive, and analytical wake models, 
which are fast but lack accuracy. Despite their limitations, analytical wake 
models remain the primary tool in practical applications. To bridge the gap 
between accuracy and computational efficiency, the first part of this work 
focuses on developing machine learning (ML)-based wake models capable of 
real-time evaluation, capturing high-fidelity flow features, generalizing well to 
unseen flow scenarios, and scaling effectively for large wind farms. 

The proposed ML-based framework consists of static and dynamic wake 
modeling approaches. Static wake modeling frameworks developed include the 
use of dimensionality reduction combined with neural networks, deep 
convolutional neural networks (CNNs) augmented with generative adversarial 
networks (GANs), and a multi-fidelity modeling approach based on a novel 
super-fidelity network. These methods ensure accurate wake representation 
with reduced computational costs. On the other hand, dynamic wake modelling 
frameworks developed include the use of dimensionality reduction alongside 
sequential prediction techniques, as well as a Bilateral Convolutional Neural 
Network (BiCNN) to capture the temporal evolution of wake structures 
efficiently. 

The second part of this work focuses on digital twining of wind farm flows 
based on physics-informed machine learning approaches. Existing tools in 
wind energy can only provide wind measurements at sparse locations, while 
low-fidelity analytical models and high-fidelity CFD models often focus on 
standalone simulation of wind farms. These tools often lack the capability to 
integrate both physical principles and real-time measurement data. To address 
this limitation, this work introduces a digital twin of the wind farm flow 
system, a data-driven, physics-informed ML model capable of predicting the 
unsteady flow field in front of a single wind turbine. It is then extended to flow 
fields across the wind farms capturing wake interactions. The developed digital 
twin integrates data from LIDAR and turbine sensors with physics-based 
constraints derived from NS equations and actuator modelling of turbine rotors, 
forming the first system capable of in situ spatiotemporal wind farm flow field 



prediction. Case studies are conducted under different operational scenarios 
and the results show that the developed digital twin can achieve accurate 
predictions of the dynamic flow fields, bringing brand new opportunities for 
wind farm control with full awareness of its wind environment. For future 
works, a Physics-Informed Sequential Deep Operator Network (PI-S-
DeepONet) is under development, eliminating the need for retraining. 

1. AI-based modelling of wind farm wakes 

The proposed framework is illustrated in Figure 1. It leverages AI-based 
modelling to develop a fast and scalable wind farm wake simulation system. It 
begins with high-fidelity numerical simulations of wind turbine wakes, 
generating flow field data that captures wake dynamics over time. This data is 
then used to train machine learning models, which learn complex wake 
interactions and develop a data-driven fast simulator. The trained model can 
efficiently predict wind farm flow fields in real-time, significantly reducing 
computational costs compared to traditional CFD-based methods. The resulting 
fast wind farm simulations retain high-fidelity flow features, generalize well to 
unseen flow conditions, and enable scalable predictions for large wind farms, 
supporting optimization and control strategies. 

 

Figure 1:  The overall framework of AI-based modelling of wind farm wakes. 

A set of machine learning models have been developed and tested within the 
framework as shown in Figure 1. For static modelling, the customised machine 
learning models developed include the combination of dimensionality 
reduction techniques with neural networks [1], a deep convolutional 
conditional generative adversarial networks (GANs)-based framework [2], and 
a multi-fidelity modelling approach based on a novel super-fidelity network. A 
sample result is shown in Figure 2, which shows that the ML surrogate model 
achieves great accuracy for both spanwise and streamwise velocities.  



 

Figure 2:  Case study of a six-turbine wind farm using the ML-based static wake model. 

For dynamic wake modelling, the machine learning models developed include 
the combination of dimensionality reduction techniques with LSTM [3], as 
well as a customised convolutional network structure called Bi-CNN [4]. A 
sample result is shown in Figure 3, which shows that the ML model accurately 
captures both the front turbine’s and the rear turbine’s wake flow fields and at 
different time instants, demonstrating its usefulness as a control-oriented wind 
farm wake model. 

 

Figure 3:  Simulation of a three-turbine case using the ML-based dynamic wake model. 

2. Digital twin of wind farm flows 

The proposed digital twin framework is illustrated in Figure 4 [5-6], which 
integrates real-time LIDAR measurements, turbine modelling, and physics-
informed neural networks (PINNs). Specifically, from the physical system, 
measurement data, including wind data using LIDAR sensors and turbine 
parameters (e.g., location, yaw angle, and thrust), are collected to inform the 
PINN model about the real-time flow states. The Navier-Stokes (NS) 
equations, along with the actuator modelling of wind turbines, are used to 
enforce physical consistency. By fusing data and physics, after training, the 
model can predict wind field dynamics in real-time, enabling accurate digital 
mirroring of the physical system. 



 

Figure 4:  The overall framework of wind farm digital twin via physics-informed ML. 

Three case studies have been carried out to test the performance of the digital 
twin, including a greedy case, a wake-steering case, and a partially-operating 
case. The results for the greedy case are given in Figure 5. The results show 
that flow characteristics, including the speed variations of incident wind, wake 
development in the downstream direction (including its deficit, deflection and 
expansion), and meandering in the crosswind direction, are all captured very 
well by the digital twin, demonstrating its value for improving wind farm 
monitoring and control. 

 

Figure 5:  The DT predictions for the greedy case. (a) the full field; (b-c) the rotor-
effective speed for the upper-row and the lower-row turbines; (d) the speed profiles. 
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