
Boundary Interface Caching as a Method to Accelerate
Solver Performance for Industrial Sliding Mesh
Simulations on GPU

Siddhartha Gautham A V*
(Siemens Digital Industry Software, India);

Benjamin Ganis
(Siemens Digital Industry Software, USA);

Abstract

Due to the significant benefits being realised in time and cost to solution, the
use of General Purpose Graphical Processing Units (GPGPUs) over traditional
Central Processing Units (CPUs) is becoming ever greater in the industrial
Computational Fluid Dynamics (CFD) world. As the processing architecture of
a GPGPU is fundamentally different to a CPU, alongside arises a need to
optimise and accelerate solver performance specifically on GPGPUs. While
certain processes become less expensive as a result of GPU acceleration,
certain other processes which were relatively quick on the CPU, may become
dominant portions of the overall run time on GPU. For unsteady CFD problems
involving Rigid Body Motion (RBM), the costs of boundary interface
computations and the maintenance of a dynamic framework for sliding meshes
can oftentimes become one such performance bottleneck on GPGPUs.

In this paper, Boundary Interface Caching (BIC) is presented as a method to
accelerate overall solver performance by significantly cutting down on these
over-head processing costs for sliding mesh / moving mesh CFD simulations.
The fundamental methodology of BIC is firstly explained, following which the
Simcenter STAR-CCM+ ® solver is used to demonstrate the benefits of
boundary caching on two industrial use cases: (1) an external aerodynamics
simulation of a car, and (2) an acoustic simulation of a HVAC (Heating,
Ventilation, Air-conditioning) fan.

Both simulations are first run without BIC to establish a baseline. They are
subsequently run with BIC, and this is done on both CPU and GPU
architecture. The resulting convergence behaviour, accuracy of solution, and
solver performance are presented, compared and contrasted in this paper.

For Simcenter STAR-CCM+ simulations with RBM, it is demonstrated that
our proprietary boundary caching algorithm provides significant improvements
in overall solver time on GPGPUs, whilst maintaining similar levels of
accuracy as the traditional CPU based simulations.

Nomenclature

Acronyms

BIC Boundary Interface Caching

CFD Computational Fluid Dynamics

CFR Cell to Face Ratio

CD Coefficient of Drag

CL Coefficient of Lift

CPU Central Processing Unit

DES Detached Eddy Simulation

DRM Direct Rotating Motion

FV Finite Volume

GPGPU General Purpose Graphical Processing Unit

GUI Graphical User Interface

HVAC Heating, Ventilation, Air-conditioning

IT Implicit Tree

LES Large Eddy Simulation

OASPL Over All Sound Pressure Level

PDE Partial Differential Equation

RBM Rigid Body Motion

1. Introduction

Sliding meshes are widely used in unsteady CFD simulations pertaining to the
automotive and aerospace domains where rigid body motion needs to be
modelled accurately. For details on how finite volume discretization is
modified in the context of RBM, see [1] for a section on “moving grids”.
Within Simcenter STAR-CCM+ ®, a sliding mesh interface is an internal
boundary interface which connects two regions rotating differently [2]. The
interface is updated with each time-step to exchange data between the two
regions. For an unsteady CFD simulation, the time consumed in a time-step
typically consists of three parts: a ‘pre-step’ needed to, amongst other things,
re-calculate the interface intersection due to the changed boundary
configuration; a ‘solver-step’ needed to solve the physics (typically flow and
energy) for that time-step; and a ‘post-step’ needed to handle any post
processing set-up by the user.

If we are looking to reduce the overall run time for a typical industrial CFD
simulation, there is limited scope for reducing the time spent on the ‘solver-
step’ and ‘post-step’. The time spent in the ‘solver-step’ depends on two
factors; the complexity of the physics employed in the simulation (which is
user-defined) and the efficiency of the physics solvers on the processing
architecture (CPU or GPU). For general physics set-ups concerning RBM the
solvers are already well optimised on CPU in most widely used commercial
CFD software and are well on their way to be (if not already) optimised on
GPU architecture with its ever-growing popularity [3,4]. The ‘post step’ part of
the time-step is user-defined and typically is standard for an industrial CFD
simulation and hence also unavoidable.

This brings us to the ‘pre-step’, which if optimised can deliver huge time
savings in the overall run time of an unsteady CFD simulation. As an example,
let us consider an unsteady external aerodynamic simulation of an automobile,
where it is common practice (in the automotive industry) to prescribe up to ~10
internal iterations per time-step, and a minimum of ~360 time-steps per
rotation of the rigid body (typically a wheel). This is to ensure that each degree
of the rotation is associated with a time-step which generally results in the level
of accuracy needed for industrial design and analysis. For acoustic CFD
simulations however, the number of time-steps per rotation of the rigid body
(say a fan) can go much higher (~2000) in pursuit of capturing the acoustic
phenomena of interest with sufficient accuracy. Also, the typical external
aerodynamic simulation in the automotive industry tends to target ~5 seconds
of total physical time; this length of physical time generally corresponds to
~100 rotations of the rigid body (wheel). For acoustic simulations, this target
tends to be an order of magnitude fewer rotations (of the rigid body).

Taking the above data into account, one can estimate that the total number of
inner iterations in a typical industrial unsteady CFD simulation can range
anywhere from ~200,000 to ~360,000. If the time spent in the ‘pre-step’ can be
reduced even slightly for a single time-step of the simulation, this will result in
a considerable reduction in overall run time.

Boundary Interface Caching (BIC) is one such way of reducing the ‘pre-step’
time significantly. The next section presents the methodology of BIC in detail.

2. Methodology of Boundary Interface Caching

The basic idea of the Boundary Interface Caching method is to form an
inexpensive database of pre-computed boundary interface intersection
solutions, to exploit the fact that the simulation will be set up to visit the same
sequence of angular positions θ1, θ2, …., θn-1, on each revolution of a rotating
body undergoing a constant time-step size and rotation rate. As long as the
problem is set up to meet these requirements, the methodology of loading
cached interface intersection solutions in lieu of computing new interface
intersection results can drastically reduce the runtime bottleneck during the
pre-step portion on each time-step, thereby accelerating transient industrial
sliding mesh simulations. For the method to be optimal and efficient, the
caching method should meet two characteristics: (1) it should have low
memory requirements, and (2) it should be very cheap to store and load
records.

In Simcenter STAR-CCM+, at the beginning of each new time-step of the
simulation, rigid body motion (RBM) may be applied to some rotating bodies,
resulting in a coordinate transformation on the rotating regions (subdomains).
For simplicity, assume there are one or more boundary interfaces between
stationary regions and rotating regions, such as the four rotating tires of an
automobile. The volume meshes will slide relative to one another along a
common boundary surface, such that the cells of each region will not overlap
during motion, i.e. there is a sliding mesh. By choosing an arbitrary time-step
size and rotation rate, the boundary interfaces between the rotating and
stationary regions become non-conformal, without remeshing or other
techniques. To compute the interface intersection mesh, the original faces are
broken up into interface facets that are constructed to couple the cells between
the rotating and the stationary regions. The intersected facets are then used to
assemble the local contributions to couple the discretized mass and energy
balance equations on adjacent cells between the stationary and rotating regions.

On each inner iteration of the time-steps, the assembly of the linear systems
that arise from the Finite Volume (FV) discretizations of the physical equations
do not require re-intersection until motion is applied at the beginning of a
subsequent time-step, so an interface intersection is reused for all inner
iterations. It is also notable in the FV method that the vector area and centroid

of each facet are the sole metric quantities that are ultimately used by each
facet, during the assembly of the linear system. More specifically, the geometry
of the facets in terms of a vertex list and vertex coordinates, are first processed
into abstract metric quantities before contributing to the linear system. In
Simcenter STAR-CCM+, the technique of retaining the vector area and
centroid of each facet is known as ‘Metrics-Based’ connectivity between
sliding mesh regions. The metrics-based intersection technique meets the low
memory requirement for the caching method. Even without BIC, the metrics-
based intersector alleviates some of the "book-keeping" required by the
Simcenter STAR-CCM+ framework to store a dynamic sliding mesh in a GPU
environment.

Next, the problem is set up to be cheap to store and load records. Assuming the
simulation will visit the same sequence of discrete angular values on each
revolution of the rotating regions. On the first revolution, the metrics-based
interface intersection is computed as usual, and the metric quantities of the
facets are stored using the current angle of rotation as the record identifier. The
interface boundary data for metric faces can be cheaply cloned into the
boundary interface cache via a low-level copy. On subsequent revolutions, the
current angle of rotation can be used to look up the record that contains the pre-
computed metric quantities of the intersection facets.

Finally, in order to ensure that the simulation visits the same sequence of
angles, we can use a simple calculation to help automate the procedure.
Assume that the simulation has reached a point that the rotating regions have a
given constant rotation rate, $rotRateRPS, in rotations per second. One free
parameter is chosen by the user to give the desired temporal resolution in terms
of the number of time-steps per revolution, $nsteps. The constant time-step
size is then calculated from these other two parameters:
$dt=1.0/($nsteps*$rotRateRPS). This method will be advantageous when
many revolutions are simulated. The maximum amount of computational
savings will be the portion of the runtime that was spent computing interface
intersection and related framework operations during the pre-step.

There are a few caveats to mention with the BIC method. The cache will only
remain valid so long as the distributed simulation has not been repartitioned,
unless the cache is also repartitioned appropriately. The cache is also valid as
long as the original boundary meshes have remained unchanged, except for the
application of a periodic RBM like a simple rotation. For example, dynamic
mesh change events such as adaptive mesh refinement or morphing the regions
would invalidate the boundary interface cache. Finally, if the sequence of
angles visited upon subsequent revolutions has not been previously visited as
described in the automation procedure, then the user would not obtain any
cache hits or performance gains from this method.

3. Computational Hardware

Throughout this work, results from and the performance of Simcenter STAR-
CCM+ on CPUs and GPUs are compared. The CPUs used are dual socket
AMD EPYC 7532 ROME (32-Core, 2.4GHz) CPUs in a 64 physical cores per
node configuration. The GPUs used are 40GB NVIDIA A100 SXM4 GPUs in
a 4 GPU per node configuration [5]. The CPUs supporting the GPU
architecture are dual socket AMD EPYC 7543 ROME (32-core, 2.4 GHz)
CPUs. The Simcenter STAR-CCM+ framework utilizes GPGPU enabled
kernels to assemble the discretized finite volume equations [6], as well as to
obtain their solution using the AmgX linear solver from NVIDIA [7].

4. Results and Discussion

To demonstrate the impact of our proprietary Boundary Interface Caching
(BIC) algorithm in Simcenter STAR-CCM+, two industrial cases simulating
Rigid Body Motion (RBM) have been selected: Case-(1) an external
aerodynamics simulation of the Maserati Ghibli car, and Case-(2) an acoustic
simulation of a HVAC (Heating, Ventilation, Air-conditioning) fan [8].

Figure 1: Geometry of Case-(1) - an external aerodynamic simulation of the Maserati
Ghibli car

Figure 2: Geometry of Case-(2) - an acoustic simulation of a HVAC fan

a. Simulation Details

Table 1 below summarizes the salient simulation details for the Simcenter
STAR-CCM+ simulations tested.

Table 1: Salient simulation details for the Simcenter STAR-CCM+ simulations
tested

Simulation
Name

Simulation
Description

Mesh Size
(No. of Cells) Active Solvers

Case-(1) External aerodynamics
simulation of a car ~140 million

Implicit Unsteady (DES)
Direct Rotating Motion (DRM)
Segregated Flow
Kw Turbulence
IT Wall Distance (Frozen)

Case-(2) Acoustic simulation of
a HVAC fan ~26.5 million

Implicit Unsteady (LES)
Rigid Body Motion (RBM)
Segregated Flow
Kw Turbulence
PDE Wall Distance
Perturbed Convective Wave

Case-(1) i.e. the external aero simulation has ~140 million cells in the core
mesh and is the larger simulation amongst the two. Case-(2) i.e. the acoustics
simulation contains only ~26.5 million cells in the core mesh. For simulating
rotation of the rigid body, Case-(1) uses the DRM model within Simcenter
STAR-CCM+ for the wheels of the car, whereas Case-(2) uses the RBM model
to simulate the rotation of the HVAC fan. DRM is an alternative method to
specify RBM, which allows for improved automation in the simulation setup.

Both simulations commonly deploy the following physics solvers in their
respective set-ups: implicit unsteady, segregated flow and the k-ω turbulence

model. Case-(1) uses a DES scheme for the implicit unsteady solver [9] while
Case-(2) deploys an LES scheme [10,11]. The wall distance solver is kept
frozen in Case-(1) and is set to the ‘PDE’ (Partial Differential Equation) in
Case-(2). Furthermore Case-(2) being an acoustics simulation also deploys the
‘Perturbed Convective Wave’ solver alongside the remaining set of standard
solvers for an industrial unsteady RBM simulation.

b. Test Set-up and Run Details

Both simulations are first run for a steady state solution without motion to
establish the flow field. Using this steady state solution as a starting point, the
unsteady CFD with RBM is then initiated. Case-(1) contains 4 sliding mesh
interfaces, one for each wheel of the car while Case-(2) contains just 1 sliding
mesh interface corresponding to the HVAC fan. As indicated in the
methodology section (section 2) of the current paper, the sliding interfaces for
both simulations are set-up to use the metrics-based intersector.

For the unsteady phase of the simulations, to ensure BIC works as intended, it
is necessary that the same sequence of angles is visited in each rotation. This is
achieved simply by tweaking the time-step size as described in the
methodology section (section 2) of the current paper. Table 2 below lists the
salient parameters set-up for both simulations in this context.

Table 2: Salient parameters set-up for BIC in the Simcenter STAR-CCM+
simulations tested

Simulation
Name

Rotation
Rate of
Sliding
Mesh

Interface
(RPS)

No. of
Time-

Steps Per
Rotation

Max.
Internal

Iterations
Per Time-

Step

Time-Step Size Used
(Secs)

$dt=1.0/($nsteps*$rotRateRPS)	

Case-(1) 17.51 228 5 2.504 E-4
Case-(2) 24.77 2000 5 2.019 E-5

The Graphical User Interface (GUI) for BIC within Simcenter STAR-CCM+ is
set-up very intuitively, with a master control provided in the ‘Interfaces’ node
of the simulation to switch ON/OFF BIC for the overall simulation [2]. A
subsequent ‘Boundary Interface Caching’ node under ‘Physics Conditions’ of
each individual sliding mesh interface provides specific control over the BIC
properties used for that specific interface. Figure 3 below shows an example of
the BIC GUI from Case-(2). Note that the default value for ‘Maximum Steps’
for BIC is 1000, but this has been changed to 2000 in Figure 3, based on the
target number of time-steps per rotation used for Case-(2) (Refer Table 2
above).

Figure 3: Boundary Interface Caching (BIC) GUI in Simcenter STAR-CCM+
(from Case-(2))

Coming to the run details, both simulations are run with and without BIC on
CPUs and GPUs located on a Siemens high performance cluster in Ireland (see
section 3 for full details of the computational hardware used). Table 3 below
provides the run details for each of the 4 runs of both simulations.

Table 3: Run details for the Simcenter STAR-CCM+ simulations tested

Simulation Name Run Configuration Run Type No. of Processors (NP)

Case-(1)

Without BIC CPU 640 With BIC
Without BIC GPU 8 With BIC

Case-(2)

Without BIC CPU 1024 With BIC
Without BIC GPU 8 With BIC

c. Simulation Results

The resulting solution from the GPU runs with and without BIC are compared
in this section.

i. Case-(1)

Figure 4 below shows a comparison of the time averaged velocity field around
the car in Case-(1), after ~5.5 seconds of physical time (~89 revolutions),
which is very similar with and without BIC.

Figure 4: Normalised velocity contour comparison (Case-(1))

Figure 5 below shows a comparison of the instantaneous coefficient of drag
(CD) as a function of physical simulation time, with and without BIC for Case-
(1). The difference between two major gridlines on the y-axis in Figure 5 is 10
counts (0.001 CD). As expected, there is some variability seen in instantaneous
CD values between the two runs due to the transient nature of the simulation.
However, we can see that the time averaged CD values for both runs fall very
close to each other (within 3 counts). Hence, for all practical purposes, the CD
predictions are very similar with and without BIC for Case-(1).

Figure 5: Coefficient of drag (Cd) comparison (Case-(1))

Figure 6 below shows a comparison of the instantaneous coefficient of lift (CL)
as a function of physical simulation time, with and without BIC for Case-(1).
The difference between two major gridlines on the y-axis in Figure 6 is 10
counts (0.001 CL). As expected, there is some variability seen in instantaneous
CL values between the two runs due to the transient nature of the simulation.
However, we can see that the time averaged CL values for both runs fall very
close to each other (within 5 counts). Hence, for all practical purposes, the CL
predictions are very similar with and without BIC for Case-(1).

Figure 6: Coefficient of lift (Cl) comparison (Case-(1))

To sum up, from the above comparisons it is very clear the resulting external
aerodynamic solution for Case-(1) is very similar with or without BIC on GPU.
This is also true on CPU.

ii. Case-(2)

Figure 7 below shows a comparison of the instantaneous acoustic pressure field
around the fan in Case-(2), which is very similar with and without BIC.

Figure 7: Instantaneous acoustic pressure field comparison (Case-(2))

Figure 8 below shows the position of a microphone (Mic 4) whose pressure
perturbation data has been analysed and plotted in Figure 9.

Figure 8: Mic 4 position (Case-(2))

Figure 9 below shows a comparison of the A-weighted sound pressure level
spectrum from Mic 4 resulting from the runs with and without BIC. The test
data from [8] for the same operating point is also plotted alongside for
reference. As can be seen from Figure 9, for all practical purposes the sound
pressure level spectrum with and without BIC is the same, barring some
expected transient variability.

Figure 9: Comparison of sound pressure level spectrum from Mic 4 (Case-(2))

Table 4 below shows a comparison of the Over All Sound Pressure Level or
OASPL (calculated as 20Log10((RMS^2)/2E-5) of Mic 4 integrated over the
whole spectrum shown in Figure 9 above, for the runs with and without BIC.

The OASPL calculated from the Test data in [8], for the same operating point
for Mic 4, is also provided in the Table 4 for reference. The difference between
the OASPL values with and without BIC is quite small at ~0.9 dB. This
difference falls well within the band of experimental variation for this set-up
and is also much smaller than the difference between the simulation result
(without BIC) and the actual test data itself (~2.4 dB).

Table 4: Overall sound pressure level comparison (Case-(2))

Simulation Name Boundary Interface Caching Mic 4 – Overall Sound Pressure Level (dB)

Case-(2) Without BIC 81.6
With BIC 82.5

Test Data [8] 84.0

To sum up, from the above comparisons it is very clear that the resulting
acoustic solution for Case-(2) is very similar with or without BIC on GPU.
This is also true on CPU.

d. Run Time Profiling and Memory Consumption

It is important to note that the first rotation of the rigid body in both Simcenter
STAR-CCM+ simulations is used to store the boundary interface cache data,
which is then loaded and used for all subsequent rotations. For the purposes of
run time comparison, both simulations are profiled from the second rotation
onwards for the breakdown of the pre-step times and the overall run times with
and without BIC. Case-(1) i.e. the external aerodynamic simulation is sampled
for ~10 rotations (after the first rotation) of the rigid bodies (wheels), while
Case-(2) i.e. the acoustic simulation is sampled for ~5 rotations (after the first
rotation) of the rigid body (HVAC fan). Figures 10 and 11 below summarize
the run time profiling results for the CPU and GPU runs respectively, for both
the Simcenter STAR-CCM+ simulations tested.

Figure 10: CPU run time profiling results for the Simcenter STAR-CCM+ simulations
tested

Figure 11: GPU run time profiling results for the Simcenter STAR-CCM+ simulations
tested

Upon activating BIC, the time spent in boundary interface intersection at each
time-step reduces to nearly zero, and instead some time is now spent on
loading the boundary interface data from the cache. As the cache load times are
significantly smaller than the intersection times, what results is a considerable
reduction in the pre-step time at each time-step.

550,9 501,4

955,2

748,8

65,5 30,4

335,9

92,2

0

200

400

600

800

1000

Without BIC With BIC Without BIC With BIC

Case-(1) Case-(2)

Ti
m

e
(M

in
s)

CPU Run Profiling

Total Run Time Pre-Step Time

286,8
230,9

926,9

493

128,7
65,5

616,9

179,3

0

200

400

600

800

1000

Without BIC With BIC Without BIC With BIC

Case-(1) Case-(2)

Ti
m

e
(M

in
s)

GPU Run Profiling

Total Run Time Pre-Step Time

As can be seen from Figures 10 and 11, the pre-step times (and consequently
the overall run times) for both Simcenter STAR-CCM+ simulations tested are
significantly lower with BIC than without, both on CPU and GPU. The pre-
step times without BIC on the GPU are generally a bigger portion of the overall
run time than on the CPU, as can be seen from Figures 10 and 11.
Consequently, BIC delivers a bigger reduction in pre-step time (and the overall
run time) on GPU than on CPU.

Figure 12: CPU memory consumption statistics for the Simcenter STAR-CCM+
simulations tested

Figure 12 above records the memory consumption statistics for all 4 runs of
both the Simcenter STAR-CCM+ simulations tested. The maximum CPU
memory consumption increases upon activating BIC for both simulations. This
is true for both the CPU run as well as the GPU run, as the cache data is stored
and retrieved from the CPU memory in both cases. In this regard, it should be
noted that the maximum GPU memory consumption for the GPU runs for
Case-(1) and Case-(2) remains at a steady ~210 GB and ~95 GB respectively,
with or without BIC.

With BIC, the maximum CPU memory consumption increases by a bigger
margin for the CPU run than the GPU run, primarily due to the higher
partitioning and hence higher halo cell counts encountered in the CPU run
(halo cells are cells shared between processors during parallel processing).
However, the increase in the maximum CPU memory consumption was not
found to hamper the CPU / GPU run progress in any way for either of the
simulation tested on the computational hardware (see section 3 for details).

0 200 400 600 800 1000 1200 1400

With BIC

Without BIC

With BIC

Without BIC

C
as

e-
(2

)
C

as
e-

(1
)

Max. CPU Resident Memory (GB)

Memory Consumption

CPU Run GPU Run

e. Performance Benefit

Figure 13 below summarises the benefits to overall run time, resulting from
boundary caching, on CPU and GPU for both the Simcenter STAR-CCM+
simulations tested. The performance benefits from BIC, in terms of overall run
time reduction, are much larger on the GPU (as compared to CPU) for both the
simulations tested. With BIC, Case-(2)’s run time is nearly cut down in half
(~47% reduction). The overall run time reduction resulting from BIC on CPU
is roughly half that observed on GPU, and this is consistent for both the
simulations tested.

Figure 13: Run time benefit from BIC

Figure 14 below summarise the benefits in the CPU equivalence which result
from boundary caching on CPU and GPU, for both the Simcenter STAR-
CCM+ simulations tested. BIC helps increase the CPU equivalence as the
overall run time benefits are much higher on GPU than on CPU. Case-(2)’s
CPU equivalence jumps up by almost ~47.5% as a result of implementing BIC.
It should be noted that, to be fair, the CPU equivalences for the runs with BIC
are calculated independent to the runs without BIC, for both simulations.

9,00%

21,60%19,50%

46,80%

0%

10%

20%

30%

40%

50%

Case-(1) Case-(2)%
 R

ed
uc

tio
n

in
 O

ve
ra

ll
R

un
 T

im
e

Run Time Benefit from BIC

CPU GPU

Figure 14: CPU equivalence benefit from BIC

Table 5 below records the Cell to Face Ratio or CFR for both the Simcenter
STAR-CCM+ simulations tested. CFR is defined as the ratio of the number of
cells in the core mesh to the number of faces on the sliding mesh interfaces of
an unsteady CFD simulation with RBM.

Table 5: Cell to face ratio for the Simcenter STAR-CCM+ simulations tested

Simulation
Name

Cell to Face Ratio (CFR)
No. of cells in core

mesh
No. of faces on sliding mesh

interfaces
Cell to Face

Ratio
Case-(1) 140,161,300 2,171,172 65
Case-(2) 26,562,950 924,729 29

The performance benefits realised from BIC are inversely proportional to the
CFR of the Simcenter STAR-CCM+ simulation. The higher the number of
faces on the sliding mesh interface(s), in comparison to the total cells in the
core mesh of the simulation, the higher is the time spent on boundary interface
intersection in the pre-step, and hence higher is the time saved upon
implementation of BIC. It is also good to note at this point that the benefits
realised from BIC are also inversely proportional to the number of ‘max.
internal iterations per timestep’ used in the stopping criteria of the unsteady
Simcenter STAR-CCM+ simulation. This happens because the higher this
number, the lesser is the proportion of the pre-step time in the overall run time.

And finally, while the % run time benefits from BIC are impressive, it is
important to note that the absolute run time benefits from BIC increase with
each new rotation of the rigid body. This would provide huge time savings for
industrial sliding mesh simulations which typically run for many days (and
many more rotations) at a time.

13%

47,40%

0%

10%

20%

30%

40%

50%

Case-(1) Case-(2)

%
In

cr
ea

se
 in

 C
PU

 E
qu

iv
al

en
ce

CPU Equivalence Benefit from BIC

5. Conclusions

In this paper, Boundary Interface Caching (BIC) is presented as a method to
accelerate overall solver performance by significantly cutting down on over-
head processing costs for sliding mesh CFD simulations. The methodology of
BIC is to effectively store boundary interface intersection information in the
first rotation of a rigid body, and to load this information for all subsequent
rotations, thereby cutting down the pre-step time of a simulation significantly.
For BIC to work as intended it is mandatory that the simulation visits the same
sequence of angles in every rotation, a condition that can be easily achieved by
slightly tweaking the time-step size (see section 2 for details).

In order to demonstrate the impact of our proprietary BIC algorithm in
Simcenter STAR-CCM+, two industrial cases simulating Rigid Body Motion
(RBM) are selected: Case-(1) an external aerodynamics simulation of the
Maserati Ghibli car, and Case-(2) an acoustic simulation of a HVAC (Heating,
Ventilation, Air-conditioning) fan [8]. To start with, both simulations are run
for a steady state solution without RBM. Subsequently, an unsteady CFD
simulation with RBM is initiated, with the relevant BIC parameters set-up
correctly. Both simulations are run with and without BIC on CPUs and GPUs
located on a Siemens high performance cluster in Ireland (see section 3 for
details).

The solutions resulting from the runs with and without BIC are compared.
After analysing the relevant instantaneous and time-averaged contours and
plots, it is concluded that the solutions resulting from the runs with and without
BIC are very similar for both the Simcenter STAR-CCM+ simulations tested.

The GPU and CPU runs for both the simulations are also profiled to understand
the impact of BIC on run time. While BIC results in a run time benefit on CPU
as well as GPU, the benefits on GPU out-weigh the benefits on CPU
considerably for both the Simcenter STAR-CCM+ simulations tested, owing to
the larger pre-step times encountered on GPU (without BIC). BIC delivers a
staggering ~47% reduction in overall run time on GPU for the acoustic
simulation tested (Case-(2)) and a similar ~48% increase in CPU equivalence.
The performance benefits from BIC are found to be inversely proportional to
the Cell to Face Ratio (CFR) of a Simcenter STAR-CCM+ simulation (see
section 4e for details).

Finally, it is concluded that BIC provides significant benefits in overall run
times, especially on GPGPUs, whilst maintaining similar levels of accuracy as
the traditional CPU based simulations.

6. Acknowledgements

The authors gratefully acknowledge (in alphabetical order) Alistair Brown,
Eberhard Schreck, Jeremy Dahan, Lars Erbig, Liam McManus, Navid
Hermidas, Ritesh Bafna and Simone Landi from Siemens Digital Industry
Software for their invaluable guidance throughout this work and their timely
review support for this paper.

7. Permission for Use

The content of this paper is copyrighted by Siemens Digital Industry Software
and is licensed to NAFEMS World Congress 2025 for publication and
distribution only. Any inquiries regarding permission to use the content of this
paper, in whole or in part, for any purpose must be addressed to Siemens
Digital Industry Software directly.

8. References

[1] J. H. Ferziger, M. Perić, and R. L. Street, Computational Methods for Fluid
Dynamics. Cham: Springer International Publishing, 2020. doi:
https://doi.org/10.1007/978-3-319-99693-6

[2] Siemens Digital Industries Software, “Simcenter STAR-CCM+ User Guide
v. 2502”, 2025. https://support.sw.siemens.com/en-US/product/226870983

[3] L. McManus, G. Goldin, Y. Zhang, I. Veljkovic, S. Sadasivuni, and K. Liu,
“GPU Accelerated LES-FGM Modelling for Industrial Combustion
Applications,” Volume 3A: Combustion, Fuels, and Emissions, Jun. 2024, doi:
https://doi.org/10.1115/gt2024-122041

[4] “The Computational Fluid Dynamics Revolution Driven by GPU
Acceleration,” NVIDIA Technical Blog, May 26, 2022.
https://developer.nvidia.com/blog/computational-fluid-dynamics-revolution-
driven-by-gpu-acceleration/

[5] “NVIDIA A100 GPUs Power the Modern Data Center,” NVIDIA.
https://www.nvidia.com/en-gb/data-center/a100/

[6] “HPC SDK | NVIDIA,” NVIDIA Developer, Mar. 11, 2020.
https://developer.nvidia.com/hpc-sdk

[7] M. Naumov et al., “AmgX: A Library for GPU Accelerated Algebraic
Multigrid and Preconditioned Iterative Methods,” SIAM Journal on Scientific
Computing, vol. 37, no. 5, pp. S602–S626, Jan. 2015, doi:
https://doi.org/10.1137/140980260

https://doi.org/10.1007/978-3-319-99693-6
https://support.sw.siemens.com/en-US/product/226870983
https://doi.org/10.1115/gt2024-122041
https://developer.nvidia.com/blog/computational-fluid-dynamics-revolution-driven-by-gpu-acceleration/
https://developer.nvidia.com/blog/computational-fluid-dynamics-revolution-driven-by-gpu-acceleration/
https://www.nvidia.com/en-gb/data-center/a100/
https://developer.nvidia.com/hpc-sdk
https://doi.org/10.1137/140980260

[8] “Acoustics involving heterogeneous and moving fluids | TU
Wien,” www.tuwien.at. https://www.tuwien.at/en/mwbw/mec/e325-03-
research-unit-of-measurement-and-actuator-technology/eaa-
benchmarks/benchmarks/acoustics-involving-heterogeneous-and-moving-
fluids

[9] P. R. Spalart, “Detached-Eddy Simulation,” Annual Review of Fluid
Mechanics, vol. 41, no. 1, pp. 181–202, Jan. 2009, doi:
https://doi.org/10.1146/annurev.fluid.010908.165130

[10] J. SMAGORINSKY, “GENERAL CIRCULATION EXPERIMENTS
WITH THE PRIMITIVE EQUATIONS,” Monthly Weather Review, vol. 91,
no. 3, pp. 99–164, Mar. 1963, doi: https://doi.org/10.1175/1520-
0493(1963)091%3C0099:gcewtp%3E2.3.co;2

[11] J. W. Deardorff, “A numerical study of three-dimensional turbulent
channel flow at large Reynolds numbers,” Journal of Fluid Mechanics, vol. 41,
no. 2, pp. 453–480, Apr. 1970, doi:
https://doi.org/10.1017/s0022112070000691

https://www.tuwien.at/en/mwbw/mec/e325-03-research-unit-of-measurement-and-actuator-technology/eaa-benchmarks/benchmarks/acoustics-involving-heterogeneous-and-moving-fluids
https://www.tuwien.at/en/mwbw/mec/e325-03-research-unit-of-measurement-and-actuator-technology/eaa-benchmarks/benchmarks/acoustics-involving-heterogeneous-and-moving-fluids
https://www.tuwien.at/en/mwbw/mec/e325-03-research-unit-of-measurement-and-actuator-technology/eaa-benchmarks/benchmarks/acoustics-involving-heterogeneous-and-moving-fluids
https://www.tuwien.at/en/mwbw/mec/e325-03-research-unit-of-measurement-and-actuator-technology/eaa-benchmarks/benchmarks/acoustics-involving-heterogeneous-and-moving-fluids
https://doi.org/10.1146/annurev.fluid.010908.165130
https://doi.org/10.1175/1520-0493(1963)091%3C0099:gcewtp%3E2.3.co;2
https://doi.org/10.1175/1520-0493(1963)091%3C0099:gcewtp%3E2.3.co;2
https://doi.org/10.1017/s0022112070000691

