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Abstract 

Due to the significant benefits being realised in time and cost to solution, the 
use of General Purpose Graphical Processing Units (GPGPUs) over traditional 
Central Processing Units (CPUs) is becoming ever greater in the industrial 
Computational Fluid Dynamics (CFD) world. As the processing architecture of 
a GPGPU is fundamentally different to a CPU, alongside arises a need to 
optimise and accelerate solver performance specifically on GPGPUs. While 
certain processes become less expensive as a result of GPU acceleration, 
certain other processes which were relatively quick on the CPU, may become 
dominant portions of the overall run time on GPU. For unsteady CFD problems 
involving Rigid Body Motion (RBM), the costs of boundary interface 
computations and the maintenance of a dynamic framework for sliding meshes 
can oftentimes become one such performance bottleneck on GPGPUs. 

In this paper, Boundary Interface Caching (BIC) is presented as a method to 
accelerate overall solver performance by significantly cutting down on these 
over-head processing costs for sliding mesh / moving mesh CFD simulations. 
The fundamental methodology of BIC is firstly explained, following which the 
Simcenter STAR-CCM+ ® solver is used to demonstrate the benefits of 
boundary caching on two industrial use cases: (1) an external aerodynamics 
simulation of a car, and (2) an acoustic simulation of a HVAC (Heating, 
Ventilation, Air-conditioning) fan. 

Both simulations are first run without BIC to establish a baseline. They are 
subsequently run with BIC, and this is done on both CPU and GPU 
architecture. The resulting convergence behaviour, accuracy of solution, and 
solver performance are presented, compared and contrasted in this paper.  

For Simcenter STAR-CCM+ simulations with RBM, it is demonstrated that 
our proprietary boundary caching algorithm provides significant improvements 
in overall solver time on GPGPUs, whilst maintaining similar levels of 
accuracy as the traditional CPU based simulations. 



Nomenclature 

Acronyms 

BIC   Boundary Interface Caching 

CFD   Computational Fluid Dynamics 

CFR   Cell to Face Ratio 

CD   Coefficient of Drag 

CL   Coefficient of Lift 

CPU   Central Processing Unit 

DES   Detached Eddy Simulation 

DRM   Direct Rotating Motion 

FV   Finite Volume 

GPGPU  General Purpose Graphical Processing Unit 

GUI   Graphical User Interface 

HVAC  Heating, Ventilation, Air-conditioning 

IT   Implicit Tree 

LES   Large Eddy Simulation 

OASPL Over All Sound Pressure Level 

PDE   Partial Differential Equation 

RBM   Rigid Body Motion 

 

 

 

 

 



 

 

1. Introduction 

Sliding meshes are widely used in unsteady CFD simulations pertaining to the 
automotive and aerospace domains where rigid body motion needs to be 
modelled accurately. For details on how finite volume discretization is 
modified in the context of RBM, see [1] for a section on “moving grids”. 
Within Simcenter STAR-CCM+ ®, a sliding mesh interface is an internal 
boundary interface which connects two regions rotating differently [2]. The 
interface is updated with each time-step to exchange data between the two 
regions. For an unsteady CFD simulation, the time consumed in a time-step 
typically consists of three parts: a ‘pre-step’ needed to, amongst other things, 
re-calculate the interface intersection due to the changed boundary 
configuration; a ‘solver-step’ needed to solve the physics (typically flow and 
energy) for that time-step; and a ‘post-step’ needed to handle any post 
processing set-up by the user. 

If we are looking to reduce the overall run time for a typical industrial CFD 
simulation, there is limited scope for reducing the time spent on the ‘solver-
step’ and ‘post-step’. The time spent in the ‘solver-step’ depends on two 
factors; the complexity of the physics employed in the simulation (which is 
user-defined) and the efficiency of the physics solvers on the processing 
architecture (CPU or GPU). For general physics set-ups concerning RBM the 
solvers are already well optimised on CPU in most widely used commercial 
CFD software and are well on their way to be (if not already) optimised on 
GPU architecture with its ever-growing popularity [3,4]. The ‘post step’ part of 
the time-step is user-defined and typically is standard for an industrial CFD 
simulation and hence also unavoidable. 

This brings us to the ‘pre-step’, which if optimised can deliver huge time 
savings in the overall run time of an unsteady CFD simulation. As an example, 
let us consider an unsteady external aerodynamic simulation of an automobile, 
where it is common practice (in the automotive industry) to prescribe up to ~10 
internal iterations per time-step, and a minimum of ~360 time-steps per 
rotation of the rigid body (typically a wheel). This is to ensure that each degree 
of the rotation is associated with a time-step which generally results in the level 
of accuracy needed for industrial design and analysis. For acoustic CFD 
simulations however, the number of time-steps per rotation of the rigid body 
(say a fan) can go much higher (~2000) in pursuit of capturing the acoustic 
phenomena of interest with sufficient accuracy. Also, the typical external 
aerodynamic simulation in the automotive industry tends to target ~5 seconds 
of total physical time; this length of physical time generally corresponds to 
~100 rotations of the rigid body (wheel). For acoustic simulations, this target 
tends to be an order of magnitude fewer rotations (of the rigid body).  



Taking the above data into account, one can estimate that the total number of 
inner iterations in a typical industrial unsteady CFD simulation can range 
anywhere from ~200,000 to ~360,000. If the time spent in the ‘pre-step’ can be 
reduced even slightly for a single time-step of the simulation, this will result in 
a considerable reduction in overall run time. 

Boundary Interface Caching (BIC) is one such way of reducing the ‘pre-step’ 
time significantly. The next section presents the methodology of BIC in detail. 

2. Methodology of Boundary Interface Caching 

The basic idea of the Boundary Interface Caching method is to form an 
inexpensive database of pre-computed boundary interface intersection 
solutions, to exploit the fact that the simulation will be set up to visit the same 
sequence of angular positions θ1, θ2, …., θn-1, on each revolution of a rotating 
body undergoing a constant time-step size and rotation rate. As long as the 
problem is set up to meet these requirements, the methodology of loading 
cached interface intersection solutions in lieu of computing new interface 
intersection results can drastically reduce the runtime bottleneck during the 
pre-step portion on each time-step, thereby accelerating transient industrial 
sliding mesh simulations. For the method to be optimal and efficient, the 
caching method should meet two characteristics: (1) it should have low 
memory requirements, and (2) it should be very cheap to store and load 
records. 

In Simcenter STAR-CCM+, at the beginning of each new time-step of the 
simulation, rigid body motion (RBM) may be applied to some rotating bodies, 
resulting in a coordinate transformation on the rotating regions (subdomains). 
For simplicity, assume there are one or more boundary interfaces between 
stationary regions and rotating regions, such as the four rotating tires of an 
automobile. The volume meshes will slide relative to one another along a 
common boundary surface, such that the cells of each region will not overlap 
during motion, i.e. there is a sliding mesh. By choosing an arbitrary time-step 
size and rotation rate, the boundary interfaces between the rotating and 
stationary regions become non-conformal, without remeshing or other 
techniques. To compute the interface intersection mesh, the original faces are 
broken up into interface facets that are constructed to couple the cells between 
the rotating and the stationary regions. The intersected facets are then used to 
assemble the local contributions to couple the discretized mass and energy 
balance equations on adjacent cells between the stationary and rotating regions. 

On each inner iteration of the time-steps, the assembly of the linear systems 
that arise from the Finite Volume (FV) discretizations of the physical equations 
do not require re-intersection until motion is applied at the beginning of a 
subsequent time-step, so an interface intersection is reused for all inner 
iterations. It is also notable in the FV method that the vector area and centroid 



 

of each facet are the sole metric quantities that are ultimately used by each 
facet, during the assembly of the linear system. More specifically, the geometry 
of the facets in terms of a vertex list and vertex coordinates, are first processed 
into abstract metric quantities before contributing to the linear system. In 
Simcenter STAR-CCM+, the technique of retaining the vector area and 
centroid of each facet is known as ‘Metrics-Based’ connectivity between 
sliding mesh regions. The metrics-based intersection technique meets the low 
memory requirement for the caching method. Even without BIC, the metrics-
based intersector alleviates some of the "book-keeping" required by the 
Simcenter STAR-CCM+ framework to store a dynamic sliding mesh in a GPU 
environment. 

Next, the problem is set up to be cheap to store and load records. Assuming the 
simulation will visit the same sequence of discrete angular values on each 
revolution of the rotating regions. On the first revolution, the metrics-based 
interface intersection is computed as usual, and the metric quantities of the 
facets are stored using the current angle of rotation as the record identifier. The 
interface boundary data for metric faces can be cheaply cloned into the 
boundary interface cache via a low-level copy. On subsequent revolutions, the 
current angle of rotation can be used to look up the record that contains the pre-
computed metric quantities of the intersection facets.  

Finally, in order to ensure that the simulation visits the same sequence of 
angles, we can use a simple calculation to help automate the procedure. 
Assume that the simulation has reached a point that the rotating regions have a 
given constant rotation rate, $rotRateRPS, in rotations per second. One free 
parameter is chosen by the user to give the desired temporal resolution in terms 
of the number of time-steps per revolution, $nsteps. The constant time-step 
size is then calculated from these other two parameters: 
$dt=1.0/($nsteps*$rotRateRPS). This method will be advantageous when 
many revolutions are simulated.  The maximum amount of computational 
savings will be the portion of the runtime that was spent computing interface 
intersection and related framework operations during the pre-step. 

There are a few caveats to mention with the BIC method. The cache will only 
remain valid so long as the distributed simulation has not been repartitioned, 
unless the cache is also repartitioned appropriately. The cache is also valid as 
long as the original boundary meshes have remained unchanged, except for the 
application of a periodic RBM like a simple rotation. For example, dynamic 
mesh change events such as adaptive mesh refinement or morphing the regions 
would invalidate the boundary interface cache. Finally, if the sequence of 
angles visited upon subsequent revolutions has not been previously visited as 
described in the automation procedure, then the user would not obtain any 
cache hits or performance gains from this method. 



3. Computational Hardware 

Throughout this work, results from and the performance of Simcenter STAR-
CCM+ on CPUs and GPUs are compared. The CPUs used are dual socket 
AMD EPYC 7532 ROME (32-Core, 2.4GHz) CPUs in a 64 physical cores per 
node configuration. The GPUs used are 40GB NVIDIA A100 SXM4 GPUs in 
a 4 GPU per node configuration [5]. The CPUs supporting the GPU 
architecture are dual socket AMD EPYC 7543 ROME (32-core, 2.4 GHz) 
CPUs. The Simcenter STAR-CCM+ framework utilizes GPGPU enabled 
kernels to assemble the discretized finite volume equations [6], as well as to 
obtain their solution using the AmgX linear solver from NVIDIA [7]. 

4. Results and Discussion 

To demonstrate the impact of our proprietary Boundary Interface Caching 
(BIC) algorithm in Simcenter STAR-CCM+, two industrial cases simulating 
Rigid Body Motion (RBM) have been selected: Case-(1) an external 
aerodynamics simulation of the Maserati Ghibli car, and Case-(2) an acoustic 
simulation of a HVAC (Heating, Ventilation, Air-conditioning) fan [8].  

 

Figure 1:  Geometry of Case-(1) - an external aerodynamic simulation of the Maserati 
Ghibli car 



 

 

Figure 2:  Geometry of Case-(2) - an acoustic simulation of a HVAC fan 

a. Simulation Details 

Table 1 below summarizes the salient simulation details for the Simcenter 
STAR-CCM+ simulations tested.  

Table 1:  Salient simulation details for the Simcenter STAR-CCM+ simulations 
tested 

Simulation 
Name 

Simulation 
Description 

Mesh Size 
(No. of Cells) Active Solvers 

Case-(1) External aerodynamics 
simulation of a car ~140 million 

Implicit Unsteady (DES) 
Direct Rotating Motion (DRM) 
Segregated Flow 
Kw Turbulence 
IT Wall Distance (Frozen) 

Case-(2) Acoustic simulation of 
a HVAC fan ~26.5 million 

Implicit Unsteady (LES) 
Rigid Body Motion (RBM) 
Segregated Flow 
Kw Turbulence 
PDE Wall Distance 
Perturbed Convective Wave 

Case-(1) i.e. the external aero simulation has ~140 million cells in the core 
mesh and is the larger simulation amongst the two. Case-(2) i.e. the acoustics 
simulation contains only ~26.5 million cells in the core mesh. For simulating 
rotation of the rigid body, Case-(1) uses the DRM model within Simcenter 
STAR-CCM+ for the wheels of the car, whereas Case-(2) uses the RBM model 
to simulate the rotation of the HVAC fan. DRM is an alternative method to 
specify RBM, which allows for improved automation in the simulation setup.  

Both simulations commonly deploy the following physics solvers in their 
respective set-ups: implicit unsteady, segregated flow and the k-ω turbulence 



model. Case-(1) uses a DES scheme for the implicit unsteady solver [9] while 
Case-(2) deploys an LES scheme [10,11]. The wall distance solver is kept 
frozen in Case-(1) and is set to the ‘PDE’ (Partial Differential Equation) in 
Case-(2). Furthermore Case-(2) being an acoustics simulation also deploys the 
‘Perturbed Convective Wave’ solver alongside the remaining set of standard 
solvers for an industrial unsteady RBM simulation. 

b. Test Set-up and Run Details 

Both simulations are first run for a steady state solution without motion to 
establish the flow field. Using this steady state solution as a starting point, the 
unsteady CFD with RBM is then initiated. Case-(1) contains 4 sliding mesh 
interfaces, one for each wheel of the car while Case-(2) contains just 1 sliding 
mesh interface corresponding to the HVAC fan. As indicated in the 
methodology section (section 2) of the current paper, the sliding interfaces for 
both simulations are set-up to use the metrics-based intersector.  

For the unsteady phase of the simulations, to ensure BIC works as intended, it 
is necessary that the same sequence of angles is visited in each rotation. This is 
achieved simply by tweaking the time-step size as described in the 
methodology section (section 2) of the current paper. Table 2 below lists the 
salient parameters set-up for both simulations in this context.  

Table 2:  Salient parameters set-up for BIC in the Simcenter STAR-CCM+ 
simulations tested 

Simulation 
Name 

Rotation 
Rate of 
Sliding 
Mesh 

Interface 
(RPS) 

No. of 
Time-

Steps Per 
Rotation 

Max. 
Internal 

Iterations 
Per Time-

Step 

Time-Step Size Used  
(Secs) 

$dt=1.0/($nsteps*$rotRateRPS)	

Case-(1) 17.51 228 5 2.504 E-4 
Case-(2) 24.77 2000 5 2.019 E-5 

The Graphical User Interface (GUI) for BIC within Simcenter STAR-CCM+ is 
set-up very intuitively, with a master control provided in the ‘Interfaces’ node 
of the simulation to switch ON/OFF BIC for the overall simulation [2]. A 
subsequent ‘Boundary Interface Caching’ node under ‘Physics Conditions’ of 
each individual sliding mesh interface provides specific control over the BIC 
properties used for that specific interface. Figure 3 below shows an example of 
the BIC GUI from Case-(2).  Note that the default value for ‘Maximum Steps’ 
for BIC is 1000, but this has been changed to 2000 in Figure 3, based on the 
target number of time-steps per rotation used for Case-(2) (Refer Table 2 
above). 



 

 

Figure 3:  Boundary Interface Caching (BIC) GUI in Simcenter STAR-CCM+        
(from Case-(2)) 

Coming to the run details, both simulations are run with and without BIC on 
CPUs and GPUs located on a Siemens high performance cluster in Ireland (see 
section 3 for full details of the computational hardware used). Table 3 below 
provides the run details for each of the 4 runs of both simulations.  

Table 3:  Run details for the Simcenter STAR-CCM+ simulations tested 

Simulation Name Run Configuration Run Type No.  of Processors (NP) 

Case-(1) 

Without BIC CPU 640 With BIC 
Without BIC GPU 8 With BIC 

Case-(2) 

Without BIC CPU 1024 With BIC 
Without BIC GPU 8 With BIC 

c. Simulation Results 

The resulting solution from the GPU runs with and without BIC are compared 
in this section.  



i. Case-(1) 

Figure 4 below shows a comparison of the time averaged velocity field around 
the car in Case-(1), after ~5.5 seconds of physical time (~89 revolutions), 
which is very similar with and without BIC.  

 

Figure 4:  Normalised velocity contour comparison (Case-(1)) 

Figure 5 below shows a comparison of the instantaneous coefficient of drag 
(CD) as a function of physical simulation time, with and without BIC for Case-
(1). The difference between two major gridlines on the y-axis in Figure 5 is 10 
counts (0.001 CD). As expected, there is some variability seen in instantaneous 
CD values between the two runs due to the transient nature of the simulation.  
However, we can see that the time averaged CD values for both runs fall very 
close to each other (within 3 counts). Hence, for all practical purposes, the CD 
predictions are very similar with and without BIC for Case-(1). 



 

 

Figure 5:  Coefficient of drag (Cd) comparison (Case-(1)) 

Figure 6 below shows a comparison of the instantaneous coefficient of lift (CL) 
as a function of physical simulation time, with and without BIC for Case-(1). 
The difference between two major gridlines on the y-axis in Figure 6 is 10 
counts (0.001 CL). As expected, there is some variability seen in instantaneous 
CL values between the two runs due to the transient nature of the simulation.  
However, we can see that the time averaged CL values for both runs fall very 
close to each other (within 5 counts). Hence, for all practical purposes, the CL 
predictions are very similar with and without BIC for Case-(1). 

 

Figure 6:  Coefficient of lift (Cl) comparison (Case-(1)) 



To sum up, from the above comparisons it is very clear the resulting external 
aerodynamic solution for Case-(1) is very similar with or without BIC on GPU. 
This is also true on CPU. 

ii. Case-(2) 

Figure 7 below shows a comparison of the instantaneous acoustic pressure field 
around the fan in Case-(2), which is very similar with and without BIC. 

 

Figure 7:  Instantaneous acoustic pressure field comparison (Case-(2)) 

Figure 8 below shows the position of a microphone (Mic 4) whose pressure 
perturbation data has been analysed and plotted in Figure 9.  



 

 

Figure 8:  Mic 4 position (Case-(2)) 

Figure 9 below shows a comparison of the A-weighted sound pressure level 
spectrum from Mic 4 resulting from the runs with and without BIC. The test 
data from [8] for the same operating point is also plotted alongside for 
reference. As can be seen from Figure 9, for all practical purposes the sound 
pressure level spectrum with and without BIC is the same, barring some 
expected transient variability. 

 

Figure 9:  Comparison of sound pressure level spectrum from Mic 4 (Case-(2)) 

Table 4 below shows a comparison of the Over All Sound Pressure Level  or 
OASPL (calculated as 20Log10((RMS^2)/2E-5) of Mic 4 integrated over the 
whole spectrum shown in Figure 9 above, for the runs with and without BIC. 



The OASPL calculated from the Test data in [8], for the same operating point 
for Mic 4, is also provided in the Table 4 for reference. The difference between 
the OASPL values with and without BIC is quite small at ~0.9 dB. This 
difference falls well within the band of experimental variation for this set-up 
and is also much smaller than the difference between the simulation result 
(without BIC) and the actual test data itself (~2.4 dB).  

Table 4:  Overall sound pressure level comparison (Case-(2)) 

Simulation Name Boundary Interface Caching Mic 4 – Overall Sound Pressure Level (dB) 

Case-(2) Without BIC 81.6 
With BIC 82.5 

Test Data [8] 84.0 

To sum up, from the above comparisons it is very clear that the resulting 
acoustic solution for Case-(2) is very similar with or without BIC on GPU. 
This is also true on CPU. 

d. Run Time Profiling and Memory Consumption 

It is important to note that the first rotation of the rigid body in both Simcenter 
STAR-CCM+ simulations is used to store the boundary interface cache data, 
which is then loaded and used for all subsequent rotations. For the purposes of 
run time comparison, both simulations are profiled from the second rotation 
onwards for the breakdown of the pre-step times and the overall run times with 
and without BIC. Case-(1) i.e. the external aerodynamic simulation is sampled 
for ~10 rotations (after the first rotation) of the rigid bodies (wheels), while 
Case-(2) i.e. the acoustic simulation is sampled for ~5 rotations (after the first 
rotation) of the rigid body (HVAC fan). Figures 10 and 11 below summarize 
the run time profiling results for the CPU and GPU runs respectively, for both 
the Simcenter STAR-CCM+ simulations tested. 



 

 

Figure 10:  CPU run time profiling results for the Simcenter STAR-CCM+ simulations 
tested 

 

Figure 11:  GPU run time profiling results for the Simcenter STAR-CCM+ simulations 
tested 

Upon activating BIC, the time spent in boundary interface intersection at each 
time-step reduces to nearly zero, and instead some time is now spent on 
loading the boundary interface data from the cache. As the cache load times are 
significantly smaller than the intersection times, what results is a considerable 
reduction in the pre-step time at each time-step.  
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As can be seen from Figures 10 and 11, the pre-step times (and consequently 
the overall run times) for both Simcenter STAR-CCM+ simulations tested are 
significantly lower with BIC than without, both on CPU and GPU. The pre-
step times without BIC on the GPU are generally a bigger portion of the overall 
run time than on the CPU, as can be seen from Figures 10 and 11. 
Consequently, BIC delivers a bigger reduction in pre-step time (and the overall 
run time) on GPU than on CPU. 

 

 

Figure 12:  CPU memory consumption statistics for the Simcenter STAR-CCM+ 
simulations tested 

Figure 12 above records the memory consumption statistics for all 4 runs of 
both the Simcenter STAR-CCM+ simulations tested. The maximum CPU 
memory consumption increases upon activating BIC for both simulations. This 
is true for both the CPU run as well as the GPU run, as the cache data is stored 
and retrieved from the CPU memory in both cases. In this regard, it should be 
noted that the maximum GPU memory consumption for the GPU runs for 
Case-(1) and Case-(2) remains at a steady ~210 GB and ~95 GB respectively, 
with or without BIC. 

With BIC, the maximum CPU memory consumption increases by a bigger 
margin for the CPU run than the GPU run, primarily due to the higher 
partitioning and hence higher halo cell counts encountered in the CPU run 
(halo cells are cells shared between processors during parallel processing). 
However, the increase in the maximum CPU memory consumption was not 
found to hamper the CPU / GPU run progress in any way for either of the 
simulation tested on the computational hardware (see section 3 for details). 
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e. Performance Benefit 

Figure 13 below summarises the benefits to overall run time, resulting from 
boundary caching, on CPU and GPU for both the Simcenter STAR-CCM+ 
simulations tested. The performance benefits from BIC, in terms of overall run 
time reduction, are much larger on the GPU (as compared to CPU) for both the 
simulations tested. With BIC, Case-(2)’s run time is nearly cut down in half 
(~47% reduction). The overall run time reduction resulting from BIC on CPU 
is roughly half that observed on GPU, and this is consistent for both the 
simulations tested. 

 

Figure 13:  Run time benefit from BIC  

Figure 14 below summarise the benefits in the CPU equivalence which result 
from boundary caching on CPU and GPU, for both the Simcenter STAR-
CCM+ simulations tested. BIC helps increase the CPU equivalence as the 
overall run time benefits are much higher on GPU than on CPU. Case-(2)’s 
CPU equivalence jumps up by almost ~47.5% as a result of implementing BIC. 
It should be noted that, to be fair, the CPU equivalences for the runs with BIC 
are calculated independent to the runs without BIC, for both simulations. 
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Figure 14:  CPU equivalence benefit from BIC 

Table 5 below records the Cell to Face Ratio or CFR for both the Simcenter 
STAR-CCM+ simulations tested. CFR is defined as the ratio of the number of 
cells in the core mesh to the number of faces on the sliding mesh interfaces of 
an unsteady CFD simulation with RBM.  

Table 5:  Cell to face ratio for the Simcenter STAR-CCM+ simulations tested 

Simulation 
Name 

Cell to Face Ratio (CFR) 
No. of cells in core 

mesh 
No. of faces on sliding mesh 

interfaces 
Cell to Face 

Ratio 
Case-(1) 140,161,300 2,171,172 65 
Case-(2) 26,562,950 924,729 29 

The performance benefits realised from BIC are inversely proportional to the 
CFR of the Simcenter STAR-CCM+ simulation. The higher the number of 
faces on the sliding mesh interface(s), in comparison to the total cells in the 
core mesh of the simulation, the higher is the time spent on boundary interface 
intersection in the pre-step, and hence higher is the time saved upon 
implementation of BIC. It is also good to note at this point that the benefits 
realised from BIC are also inversely proportional to the number of ‘max. 
internal iterations per timestep’ used in the stopping criteria of the unsteady 
Simcenter STAR-CCM+ simulation. This happens because the higher this 
number, the lesser is the proportion of the pre-step time in the overall run time. 

And finally, while the % run time benefits from BIC are impressive, it is 
important to note that the absolute run time benefits from BIC increase with 
each new rotation of the rigid body. This would provide huge time savings for 
industrial sliding mesh simulations which typically run for many days (and 
many more rotations) at a time. 
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5. Conclusions 

In this paper, Boundary Interface Caching (BIC) is presented as a method to 
accelerate overall solver performance by significantly cutting down on over-
head processing costs for sliding mesh CFD simulations. The methodology of 
BIC is to effectively store boundary interface intersection information in the 
first rotation of a rigid body, and to load this information for all subsequent 
rotations, thereby cutting down the pre-step time of a simulation significantly. 
For BIC to work as intended it is mandatory that the simulation visits the same 
sequence of angles in every rotation, a condition that can be easily achieved by 
slightly tweaking the time-step size (see section 2 for details). 

In order to demonstrate the impact of our proprietary BIC algorithm in 
Simcenter STAR-CCM+, two industrial cases simulating Rigid Body Motion 
(RBM) are selected: Case-(1) an external aerodynamics simulation of the 
Maserati Ghibli car, and Case-(2) an acoustic simulation of a HVAC (Heating, 
Ventilation, Air-conditioning) fan [8]. To start with, both simulations are run 
for a steady state solution without RBM. Subsequently, an unsteady CFD 
simulation with RBM is initiated, with the relevant BIC parameters set-up 
correctly. Both simulations are run with and without BIC on CPUs and GPUs 
located on a Siemens high performance cluster in Ireland (see section 3 for 
details). 

The solutions resulting from the runs with and without BIC are compared. 
After analysing the relevant instantaneous and time-averaged contours and 
plots, it is concluded that the solutions resulting from the runs with and without 
BIC are very similar for both the Simcenter STAR-CCM+ simulations tested. 

The GPU and CPU runs for both the simulations are also profiled to understand 
the impact of BIC on run time. While BIC results in a run time benefit on CPU 
as well as GPU, the benefits on GPU out-weigh the benefits on CPU 
considerably for both the Simcenter STAR-CCM+ simulations tested, owing to 
the larger pre-step times encountered on GPU (without BIC). BIC delivers a 
staggering ~47% reduction in overall run time on GPU for the acoustic 
simulation tested (Case-(2)) and a similar ~48% increase in CPU equivalence. 
The performance benefits from BIC are found to be inversely proportional to 
the Cell to Face Ratio (CFR) of a Simcenter STAR-CCM+ simulation (see 
section 4e for details). 

Finally, it is concluded that BIC provides significant benefits in overall run 
times, especially on GPGPUs, whilst maintaining similar levels of accuracy as 
the traditional CPU based simulations. 
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