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Abstract 

The production of high-quality glass demands precise control over furnace 
parameters, raw material inputs, and a thorough assessment of the final glass 
product. Quality and defect levels are crucial factors influencing efficiency, 
cost, waste, and sustainability in glass manufacturing. Given the multitude of 
furnace parameters, often of the order 100, determining quality through 
numerical simulation alone remains a challenging problem. Adding to this 
complexity is the time delay between the formation of molten glass and the 
detection of defects in the final product. To achieve good quality glass, the 
residence time of the glass in the furnace needs to be at least 8-12 hours. This 
residence time is not constant and highly depends on the process parameters. 
Changes made to the inputs will affect the quality of the final product at a 
much later stage. An application that predicts the upcoming glass quality as a 
function of current and previous inputs supports optimal furnace performance. 
CelSian addresses these challenges by integrating machine learning with 
furnace simulation to predict glass quality based on process parameters and 
user input variables. Celfos, powered by CelSian’s CFD simulation package 
GTM-X, simulates furnace dynamics from user inputs, capturing changes in 
parametric values over time. By training an AI model on a large dataset, Celfos 
predicts defect counts over time. This approach combines the physics-driven 
simulation of GTM-X with the predictive power of AI, offering a novel 
pathway for proactive quality control in glass production. An important aspect 
of the development is a parallel, governmental-funded, project to speed up the 
CFD code significantly. This is done through AI-enforced solvers and usage of 
GPU’s. The currently ongoing research projects for glass quality prediction 
show promising results. This article shows some of the results achieved and a 
forecast for future improvements. Also, the implementation of AI to speed up 
the CFD is briefly discussed. 

 

1. Introduction 
The art of glass production has a long history and is entwined with the progress 
of human civilization. Although glass production has been studied over 



millennia, difficulties are still faced at an industrial level. Glass production is 
governed by a multitude of parameters ranging from furnace control 
parameters, raw materials and through the assessment of the final product for 
defects. Precise control of each parameter is necessary for the production of 
defects-free glass. Quality and number of defects are crucial factors which 
influence efficiency, cost, waste, and sustainability in the process of glass 
manufacturing. Over time multiple studies have been performed to numerically 
simulate the glass furnace [1-5]. These numerical methods use computational 
fluid dynamics (CFD) techniques to simulate all relevant phenomena in the 
complete glass melting process such as: flow, temperature, melting, multi-
phase flow, electrical fields, chemical reactions, radiation, and combustion. 
However, one of the major drawbacks of these numerical simulations is the 
inability to predict the quality of glass as the end of the production process.  
 
Industrial furnaces are large and hence multitude of parameters, often together, 
control the quality of the final glass product. This also includes the quality of 
the raw materials being used which changes over time due to changes in 
supply. The furnace itself goes through repairs and parts are replaced due to 
aging. Many unforeseen parameters play a role in the quality of the final glass 
product. Hence it is non-trivial to predict the quality of the glass through 
numerical simulations. As a result, this is an active field of research at both 
academic and industrial institutions. 

CelSian has developed a numerical model powered by machine learning to 
predict the quality of glass from the different furnace parameters. The model is 
trained on a real-life dataset obtained from our industry partners. By combining 
the furnace dynamics simulations from CFD [4,5,6], the model uses machine 
learning to predict the number of defects in the produced glass. The residence 
time of the molten glass inside the furnace is modeled using tracers on the CFD 
solution which is used to pre-process the furnace parameter data. The furnace 
parameters include temperatures from different thermocouples at different parts 
of the furnace including melter and the crown, speed, tonnage, fuel flow rate, 
etc. The full process is shown in Figure 1. 

 

Figure 1:  Illustration of the problem statement 

This paper is structured in the following way: section 2 describes the model of 
the numerical method, section 3 elaborates the results obtained from the model 
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and section 4 concludes the current article with a brief discussion about the 
future prospects. 

2. Model Description 

One of the governing factors of the quality of the final glass product is the 
dynamics of the molten glass inside the furnace. Complex physical phenomena 
involving fluid dynamics, chemical reactions, heat transfer, combustion, etc. 
occur inside the furnace. Figure 2 represents a schematic of a glass-melting 
furnace. The raw materials are pushed inside the furnace which contains 
molten glass. Gaseous fuel is injected into the upper half of the furnace where 
combustion takes place. The heat is radiated from the combustion space of the 
furnace which heats the raw materials and it ultimately melts. Convective flow 
occurs inside the molten glass that enhances mixing and proper heat 
distribution which aids the melting of the raw materials. 

 

Figure 2:   Schematic view of a glass melting furnace [4]. 

The molten glass is then processed into the required final product (container 
glass, float glass, fibre glass, etc). Accurate modeling of the complex 
phenomenon inside the glass furnace is necessary for the prediction of the final 
glass quality. 

The main work described in this paper is to create a machine learning model to 
correlate the number of defects of the final glass product with the different 
furnace parameters, which are obtained from different sensors places in 
different parts of the furnace. One of the main governing factors on the quality 
of glass is the temperature of the molten glass at different parts of the melter 



(the bottom half of the furnace that holds the molten glass). The temperatures 
are detected using thermocouples. 

 

Figure 3:  Schematic of float glass production process. Visualization of a tracer from 
start to exit of the line. 

Due to the complex geometry and flow profile in the melter, there is a delay in 
the temperature 𝑇(𝑡) measured at time 𝑡 and the quality metric, say the number 
of defects, detected at time 𝑡, say 𝑄(𝑡). This delay comes from mainly two 
factors, the glass is passing through the lehr and tin bath after being melted 
before reaching the quality sensor, so the delay depends on the line-speed of 
the production process and can be overcome by using a fixed delay in time,  
Δ𝑡!. The second delay is more complex to deal with as it originates from the 
complex fluid flow of the molten glass inside the melter. The unit volume of 
molten glass, the temperature of which a thermocouple detects at time 𝑡, does 
not instantly go to the exit of the furnace, but rather follows a complex path. 
Also, the unit volume of molten glass breaks up along the path to the exit. This 
delay can be simulated using tracers as shown in the schematic of the Figure 3. 

 

Figure 4:  Trajectory of the tracer particles. This simulation is a representation of 
tracer particle study in a generic glass furnace. 
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The simulations of the glass furnace are performed on our in-house solver 
GTM-X which is a boundary-fitted CFD-model that simulates the complete 
glass melting process. The flow equations are solved using a finite-volume 
method on a body-fitted, multi-block, structure grid [10]. The solver is 
parallelized using MPI and the blocks are distributed over a number of 
processors which sufficiently shorten the computational time to within the 
order of 1 to 2 days. 

The simulation of tracers is performed with a steady-state solution of the CFD 
model. As shown in Figure 4, for each thermocouple location, 60,000 inert 
tracers are initialized from a volume of say 100mm sided cube. The volume of 
fluid is assumed to influence the said thermocouple. The particles released 
follow the path of the streamlines. Since each streamline is different, the tracers 
take different paths and hence amounts of time to reach to the exit of the 
furnace. This can be plotted in the form of a residence time distribution plots as 
shown in Figure 5. 

 

 

Figure 5:  A typical residence time distribution (RTD%) of a generic glass furnace. The 
red dashed line denotes the threshold value, above which the data is considered. The 
blue shaded area of the right plot denotes the cumulative tracers considered for the 
data. 

Figure 5 shows the residence time distribution (RTD) of a tracer study from a 
single thermocouple. A minimum threshold ℎ% is set to focus on the tracers 
that stay in the furnace for a longer period of time. The RTD is then discretized 
into a set interval and the residence times for each discretized section is 
documented. These residence times, represented as Δ𝑡"#$%, along with the fixed 
delay (Δ𝑡!) will be used in the pre-processing of the data for the training of the 
machine learning model. 

Machine learning model 

The goal is to correlate the number of defects of the final glass product with the 
values of the different furnace parameters. The furnace being a highly complex 



instrument is governed by multiple parameters, which is of the order 100. 
These parameters have different levels of dominance over the final glass 
quality. Hence machine learning is one of the best solutions for correlating 
between multiple input features to a single target parameter.  

The data used to train the machine learning model is collected in collaboration 
with a float glass manufacturer. Raw sensor and thermocouple data from the 
float glass furnace is uploaded to their servers and subsequently transferred to 
the Snowflake data storage facility. The raw data is accessed using SQL 
commands, performing preprocessing, and ultimately using the cleaned dataset 
to train machine learning models. Depending on the type of sensor, the data 
stored on Snowflake are around one minute interval and total 2 years’ worth of 
data is stored and updated in real time. One year’s worth of data from a furnace 
was used. The data, especially the thermocouple temperature data, needs to be 
pre-processed before being used in the training process. The delay between the 
reading of the thermocouple temperature and the detection of defects is 
obtained using the residence time distribution from the CFD simulations. From 
the discretized RTD, the time required for the glass tracer to reach the exit of 
the furnace from the start thermocouple is categorized for each discrete 
segment of the RTD. Using these categorized time values and the historical 
temperature data for each thermocouple obtained from the plant furnace, 
different categories of temperature data are created per training to each delay 
category. The delay for each category, the time delay is denoted as Δ𝑡"#$%& , 
Δ𝑡"#$%' , …, Δ𝑡"#$%(  , where the superscript {1, 2, …, n} denotes the category of 
the discretized RTD. Assuming the data is pre-processed with a period of Δ𝑡, 
the pre-processing of the temperature can be represented as shown in Table 1. 

Table 1:  Modification of temperature data to accommodate the delay due to 
residence time inside the furnace and also the fixed delay due to the lehr and tin 

bath. Q(t) represents the quality metric, which is number of defects in this 
article, measured at time, t. 

Time T1 T2 … Tn Q 

𝒕 𝑇&(𝑡 − Δ𝑡!
− Δ𝑡"#$%& ) 

𝑇'+𝑡 − Δ𝑡!
− Δ𝑡"#$%' , 

… 𝑇(+𝑡 − Δ𝑡!
− Δ𝑡"#$%( , 

𝑄(𝑡) 

𝒕 + 𝚫𝒕 𝑇&+𝑡 − Δ𝑡!
− Δ𝑡"#$%&

+ Δ𝑡, 

𝑇'+𝑡 − Δ!
− Δ𝑡"#$%'

+ Δ𝑡, 

… 𝑇(+𝑡 − Δ𝑡!
− Δ + Δ𝑡, 

𝑄(𝑡 + Δ𝑡) 
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𝒕 + 𝟐𝚫𝒕 𝑇&+𝑡 − Δ𝑡!
− Δ𝑡"#$%'

+ 2Δ𝑡, 

𝑇'+𝑡 − Δ𝑡!
− Δ𝑡"#$%'

+ 2Δ𝑡, 

… 𝑇(+𝑡 − Δ𝑡!
− Δ𝑡"#$%(

+ 2Δ𝑡, 

𝑄(𝑡
+ 2Δ𝑡) 

… … … … … … 

𝒕 + 𝑵𝚫𝒕 𝑇&+𝑡 − Δ𝑡!
− Δ𝑡"#$%(

+ 𝑁Δ𝑡, 

𝑇'+𝑡 − Δ𝑡!
− Δ𝑡"#$%'

+ 𝑁Δ𝑡, 

… 𝑇(+𝑡 − Δ𝑡!
− Δ𝑡"#$%(

+ 𝑁Δ𝑡, 

𝑄(𝑡
+ 𝑁Δ𝑡) 

This preprocessing of temperature for all the thermocouples is performed based 
on the Table 1. Also including all other furnace parameters, the total input 
variables (input features) for the training of the machine learning model is 
around 1000.  

For the machine learning process, a feed forward multi-layered perceptron 
(FFMLP) was used with 3-4 layers.   

 

 

Figure 6:  Schematic of a feed-forward multi-layered perceptron. 

Figure 6 shows a schematic of a version of a feed-forward multi-layered 
perceptron (FFMLP). The preprocessing of the data and the model is trained 
using Python [7] and TensorFlow [8] respectively. A mean squared error (mse) 
function was used as the loss function. For updating the weights and the biases 
of the model during the training process, the Adams [9] optimizer was used. 
The metrics used for measuring the accuracy of the model are root mean 



squared error (RMSE) for the error and the coefficient of determination, also 
known as R2 score. The relevant equations can be shown as: 

𝑅𝑀𝑆𝐸 = 8&
)
∑ +𝑦*'; − 𝑦$',$+&
)     (1) 

𝑅'𝑠𝑐𝑜𝑟𝑒 = 1 − ∑ (.!/.0)"!#$
%

∑ (.!/.!)"!#$
%

       (2) 

where 𝑦*B  is the predicted data and 𝑦$ is the real (test) target data. The mean of 
the test target is given by 𝑦. The accuracy can also be calculated from the 
RMSE error as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 2345
.&'(/.&!%

      (3) 

where 𝑦67# and 𝑦6$( are maximum and minimum values of the target in the 
test dataset. Multiple different learning rates over a range of 0.00001 to 0.001 
are used to model so as to find the optimum value that reduced the noise, 
increased stability, and was trained the fastest.  

3. Results and Discussion 

In this section, the results of the trained model are shown using real-life data 
from the furnace. The data is obtained from industrial partners who provided us 
with the data to train the model.  

This paper focusses on the defects which are the main cause of reject in glass 
manufacturing: bubbles. The features used in the model are temperature data 
from the melter and different furnace parameters like linespeed, tonnage, 
crown temperature, etc. Multiple features were tested to find the most optimum 
features that give the best correlation between the furnace parameters and the 
target defects. 

Multiple tests were performed to determine the optimum hyperparameters 
including which type of optimizer to use and the formula for loss calculation, 
value of the batch size, learning rate, number of layers and densities of each 
layer, etc. Also, the tests were performed to find the combination of furnace 
parameters that correlate the highest with the number of defects. 

The data used to run the training of the machine learning model is obtained 
through private communications with our industrial partners. Due to the 
proprietary nature of the data, the raw data cannot be shown publicly. The total 
dataset is for 2 years of data, containing around 30,000 datapoints which is 
split into training and testing dataset, with 20% going to the test dataset. The 
dataset contains raw data from the hundreds of sensors located at various parts 
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of the furnace. The most relevant ones were chosen for the development of the 
machine learning model. 

For the first test, we choose one thermocouple data and a few other furnace 
parameters. The temperature data from the thermocouple is pre-processed 
using the RTD as discussed in the previous section. Around 150 features is 
created with a single target (number of bubbles). A 2 layer model architecture 
was used for the test with layer density of {256, 64}. 

 

 

 

Figure 7:  (a) Example of Predicted (orange) defects over a period of time compared to 
the actual defects (blue) defects detected during the same period. (b) Actual (test) 
defects vs predicted defects. The actual defects are in blue and the predicted defects 
are in orange. The predicted defects match closely with the actual defects with a slight 
over-prediction over the period.   

Using the model described in the previous section, the model gives a prediction 
of the defects as shown in Figure 7. It shows a period of around 3 months of 
the data target data (number of defects) as compared to the predicted target for 
the same period. The predicted data matches quite well with the test data with a 
slight over-prediction. Since the model is designed to predict defects, at an 
industrial level, under-prediction of defects is more hazardous than over-
prediction and hence slight over-prediction is preferred. The accuracy of this 
example is around 78%. 

Another test is performed where 4 thermocouples are used as input parameters 
along with other furnace parameters. Similar to the previous test, the melter 
temperature data are pre-processed using the RTD method as described in the 



previous section which incorporates the delays over time in a single dataset. 
Due to the high number of temperature data, the RTD creates features almost 
1000 in number. Due to the higher number of input features, the model used 
here has 3 layers with structure {728, 256, 128}. The model is run for 1000 
epochs at which point the validation loss and becomes constant even though 
the training loss decreases. To avoid over fitting, the model training is stopped 
around 1000 epochs. 

 

 

Figure 8:  Example of Predicted (orange) defects over a period of time compared to the 
actual defects (blue) defects detected during the same period. 

Figure 8 shows the comparison between the test target data in blue and the 
predicted target data in orange. The model gives a good accuracy with the 
metrics R2 score=0.40358, RMSE=41.29, accuracy=87.64%. The model is 
accurate enough to provide real time prediction of defects from furnace 
parameters. Comparing between the results of Figure 7 and 8, it can be 
observed that the model has more accurate predictive capabilities with higher 
number of furnace parameters. 

4. Conclusion and future work 

In this article a physics assisted machine learning model was introduced for the 
purpose of correlating glass furnace parameters with number of defects in the 
final glass product.  

The correlation between the furnace parameters and the glass defects are non-
trivial and hence GTM-X is used to obtain CFD simulations of a glass furnace. 
These simulations provide us with the dynamics of molten glass flow inside the 
furnace. From these simulations the delay between the glass being present at a 
furnace sensor (thermocouple) and the final glass product under the defect-
scanner is calculated using residence time distributions (RTD) using tracers. 
The time delays are obtained from the discretized RTD which are used to 
create temperature data with different delays.   

The raw data from the furnace is pre-processed to remove any outliers. The 
model is trained with a complex feed forward multi-layered perceptron 
(FFMLP). Multiple tests are performed to optimize the hyperparameters to 
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increase accuracy and the learning speed of the model. Also, tests are 
performed to find the combination of furnace parameters that correlate the 
highest with the defects. Ultimately an accuracy of 87% with R2 score of 0.4 is 
obtained with the test dataset. 

Future plans for further development are in the pipeline. More complex models 
including convolutional models and memory-based neural network are under 
development to further improve the temporal prediction capabilities.  
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