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Abstract 

Today's software tools are extensive and continually expanding, incorporating 
more and more features from the CFD area, which makes the tools powerful, but 
often leaves users lost in the innumerable settings. Consequently, users have to 
deal with customizable repetitive tasks operating on SW tools, invest significant 
amount of time to search for a proper API to write and to adjust macros, which 
is a backbone of any execution action. Additionally, due to the fact that the tool 
undergoes continuous updates and improvements, there are deprecated API, 
which have to be adjusted manually after a user switch to a new version. With 
the raise of Generative AI and Large Language Model (LLM) users expect an 
LLM-based assistant for code generation, enhancement and explanation 
operations and, surely, dealing with deprecated code. Indeed, the integration of 
Generative AI and LLM agents presents significant opportunities for workflow 
automation and enhancing efficiency. However, there are challenges in 
application of Generative AI to the area of code generation. First, APIs are kept 
confidential, which means that advertised LLMs are not familiar with the syntax. 
The second challenge is organising the existing data to feed AI to get 
sophisticated results. By employing specialized approaches for storing and 
querying source data, such as Vector-based DataBases (Vector DB) and Graph-
based DataBases (Graph DB), overall precision of generated code can be 
improved. This article explores the innovative application of Generative AI 
combining it with advanced data retrieval mechanisms from Vector DBs and 
Graph DBs to automate the CFD workflow. It specifically focuses on the use 
case of employing LLM agents for macro generation, macro adjustments and 
macro updates within CAE Tools.  

 

1. Introduction  

As software tools evolve and expand their capabilities, they incorporate 
increasingly complex features that address CFD challenges, but simultaneously 
introduce a layer of complexity for users. This complexity arises from the vast 
number of settings and options that users must navigate, often leading to 
difficulties in managing and optimizing repetitive tasks. A significant portion of 
the user experience CAE software involves writing, adjusting, and maintaining 



macros, which serve as the backbone for executing repetitive actions within the 
tools. The continuous software updates and improvements lead to modifications 
in APIs, which result in the necessity to deal with deprecated APIs. In these 
scenarios macros must be manually adjusted each time a new version is released. 

Recent advancements in Generative AI and LLMs offer innovative solutions to 
address these challenges by automating macro generation, macro adjustment, 
and macro maintenance tasks. Users now expect these intelligent agents to assist 
in the initial creation of code, refining it, explaining its functionality, and 
updating it to comply with newer software versions. The potential of Generative 
AI and LLMs is particularly significant in reducing the effort required for 
manual interventions, thereby optimizing the workflow and increasing 
productivity. The integration of such technologies promises a paradigm shift in 
how users interact with complex software tools. 

Despite the promising capabilities of Generative AI and LLMs, several 
challenges delay their seamless integration into automated code generation for 
specific software environments. One significant challenge is the proprietary 
nature of commercial software APIs and existing examples, which limits the 
familiarity and training of widely advertised LLM models [1] with the specific 
syntax and functionality of these APIs. This confidentiality restricts the 
effectiveness of LLMs when generating or adjusting macros tailored for these 
software tools. 

Another critical challenge lies in the organization and accessibility of existing 
data required to train the AI models to produce sophisticated and accurate results. 
Effective code generation by LLMs relies heavily on the quality and structure of 
the available data. Poorly organized data, which might include missing 
descriptions, missing examples, lack of documentation on deprecated APIs, 
storage in the format hard for the perception without additional context, can 
significantly compromise the precision of generated code, resulting in 
suboptimal or erroneous outputs. Thus, it is essential to employ advanced data 
retrieval mechanisms to enhance the data retrieval process. 

This article addresses these challenges by exploring approaches to improve the 
integration of Generative AI in automating CFD workflows. Specifically, it 
investigates the combination of Generative AI with advanced data management 
techniques, such as Vector and Graph DBs, and the new trend of multi-agent 
systems to optimize the retrieval and utilization of source data. Vector DBs can 
store and retrieve data effectively based on similarity, while Graph DBs provide 
a structured and interconnected way to manage the relationship between data 
points. Together, these technologies can enhance the accuracy and relevance of 
the generated code. 

The focus of this study is on the practical application of these combined 
technologies within CAE Tools. By employing LLM agents for macro 
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generation and adjustments, the study aims to demonstrate the architecture of a 
research prototype for automated code generation, adjustment and update. The 
methodologies and results presented in this article offer valuable insights on 
practical solutions for effectively integrating Generative AI into CFD 
workflows. 

 

2. Automation Process with Macros 

Automation capabilities as available in many CAE software tools have  
significantly transformed user engagement with CFD simulations. This 
advancement offers a more streamlined and efficient methodology for 
addressing engineering challenges and is valued by customers [2]. The software 
allows extensive customization capabilities through its APIs, enabling users to 
tailor the simulation environment to their specific needs. The software's scripting 
capabilities allow users to automate everything from geometry import through 
to post-processing. Some users heavily rely on these automation tools (see 
Error! Reference source not found.), creating macros and scripts to handle 
recurring tasks and to reduce user errors. This massively enhances productivity 
and guarantees consistency across projects. 

 

Figure 1. Automation in CAE Tools. 

Any sophisticated software undergoes continuous updates and improvements. 
As new features are introduced and existing functionalities are enhanced, certain 
API methods and classes become outdated and are marked for future removal. 
One common challenge users face is dealing with such deprecated code.  

For users, this means that their existing scripts and customizations may contain 
deprecated code that needs to be revised. The accumulation of such code is a 
common scenario in long-term projects, where initial scripts were written using 



older versions of the API. As the software evolves, these scripts must be updated 
to align with the current standards, ensuring optimal performance and avoiding 
potential issues. 

Another frequently encountered challenge in the use of automation is the 
generation and, more commonly, the modification of macro code. Typically, a 
user initially records a macro and subsequently adapts it for a specific 
application.  The documentation may contain elements from more than 10000 of 
classes and methods, which have often insufficient documentation and are 
lacking application examples for effective semantic search. 

Despite of all inconveniences 
mentioned above, over time, utilizing 
macros in CAE software proves to be 
significantly more time-efficient 
compared to the repetitive process of 
manual clicking (Figure 2. Comparison of 
time spent: manual processes vs. Java 
MacrosFigure 2). However, one must 
consider the ongoing cost of 
maintaining these scripts, as 
adjustments are often necessary due to 
the deprecation of code in software 
updates. This could result in additional 
workload to ensure that scripts remain functional, potentially offsetting some of 
the initial time savings. Nevertheless, the efficiency gains in long-term project 
execution generally outweigh the periodic maintenance efforts required to keep 
the automation up-to-date. 

3. Related Work 

The application of LLMs to automate code generation has gathered substantial 
attention across various domains, such as code generation, code refinement, 
legacy code modernization, and their integration into automated workflows. 

One significant area of research involves generating code by retrieving relevant 
documentation. [3] introduced 'DocPrompting,' a technique, where LLMs 
dynamically query code snippets from documentation to generate the code. This 
approach highlights the potential of LLMs to bridge the gap between LLMs 
trained on publicly available code and extensive, often complex, confidential 
API documentation, exemplifying how leveraging existing documentation can 
enhance the accuracy of generated code. 

Furthermore, the inherent capability of LLMs to act as few-shot learners, as 
demonstrated by [4]. By leveraging minimal examples, LLMs can adapt to new 

Figure 2. Comparison of time spent: manual 
processes vs. Java Macros. 
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tasks with surprisingly high proficiency, which is particularly beneficial for 
generating code in diverse domains without extensive retraining. 

In addition to generating initial code snippets, recent studies have focused on 
refining and improving the generated code using AI agents. For instance, [5] 
proposed 'CRITIC,' a system where LLMs iteratively interact with tools to 
critique and enhance the generated code. Similarly, [6] introduced 'Cross-
Refine,' an approach employing tandem learning to generate and iteratively 
refine natural language explanations, which can be analogously applied to code 
generation. Additionally, motivated by how humans refine their written text, [7] 
introduced Self-Refine, an approach for improving initial outputs from LLMs 
through iterative feedback and refinement. The main idea is to generate an initial 
output using an LLM; then, the same LLM provides feedback for its output and 
uses it to refine itself, iteratively. 

Modernizing legacy code is another critical area, where LLMs demonstrate 
significant potential. [8] explored the challenges and opportunities in utilizing 
LLMs for updating and maintaining legacy codebases, focusing on the 
generation of updated documentation and code adjustments. 

Overall, the related work in leveraging LLMs for code generation spans multiple 
innovative directions, from initial code generation based on document retrieval 
and few-shot learning to iterative refinement and legacy code modernization. In 
our work we are forced to incorporate several techniques in the form of multi-
agent system. 

4. Data Storage and Retrieval Mechanisms 

LLMs have demonstrated remarkable capabilities in generating code, but their 
performance can be significantly enhanced by incorporating retrieval-
augmented generation (RAG) [9], [10] and few-shot prompting techniques [4]. 
These approaches are particularly crucial, when LLMs are not trained on 
confidential or permanently extended data, as they enable the models to 
dynamically access relevant information from external sources. Vector and 
Graph DBs play an important role in this context, enabling efficient and fast 
retrieval of embeddings that capture semantic similarities within the data.  

RAG techniques enhance LLM performance by supplementing their generative 
capabilities with dynamically fetched, contextually relevant information. For 
instance, when an LLM is not pre-trained on specific confidential datasets, RAG 
allows it to retrieve and integrate up-to-date, relevant data during the generation 
process. This dynamic retrieval ensures that the LLM's responses remain 



accurate and contextually appropriate, providing an effective workaround for 
scenarios, where pre-training on certain data is not feasible.  

Few-shot learning enables LLMs to quickly adapt to new tasks and domains 
based on just a few examples, without the need for extensive task-specific 
training. Vector and Graph DBs optimize this process by efficiently storing and 
indexing examples, allowing the LLM to access relevant resources quickly. This 
capability is especially valuable, when the LLM lacks prior exposure to specific 
confidential data, ensuring context-aware learning.  

Vector DBs are good in handling high-dimensional data and computing semantic 
similarities between data points. They convert data into embeddings, which are 
numerical representations of the data in high-dimensional space. This allows 
similarity search using metrics like cosine similarity or Euclidean distance. Their 
primary strength lies in managing and querying large volumes of unstructured 
data, making them ideal for tasks like document similarity search.  

On the other hand, Graph DBs are designed to model and navigate relationships 
between data points through nodes and edges. Their strength lies in representing 
and querying relationships and structures within the data. This makes them 
useful for tasks like exploring connections within the API elements. Thoughtful 
extraction from the API documentation can also add additional connections, 
when mapping out the relationships between different entities for a more in-
depth contextual comprehension. For example, when mapping out the 
relationships between elements for a more in-depth contextual comprehension 
more direct links could be retrieved. 

Overall, the integration of Vector and Graph DBs is essential for LLMs to 
leverage RAG and few-shot learning techniques effectively, maintaining 
performance and scalability even, when trained data is limited or unavailable. 

5. Multi-Agent System Architecture 

Multi-Agent Systems (MAS) provide a framework for addressing complex tasks 
through the utilization of multiple interacting intelligent agents. These agents, 
which may comprise software autonomous units, which operate independently 
within a given environment. The fundamental characteristics of MAS include 
autonomy, social ability to interact with other agents, reactivity to environmental 
changes, and proactiveness in goal achievement. 

The advantageous features of MAS include scalability, robustness, and 
flexibility. MAS system can be easily scaled by adding more agents, which 
enhances its capacity to handle complex tasks. Furthermore, the failure of a 
single agent does not affect the overall performance, ensuring robustness. The 
flexibility of MAS allows for dynamic adaptation to changing environments and 
tasks, making them suitable for systems that require collaborative autonomy to 
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achieve collective goals. This paradigm is particularly effective for complex 
problem-solving while maintaining user-friendly interaction through natural 
language interfaces. 

Here, we outline one way of how MAS implemented to enable the dynamic 
creation, modification, and updating of code through the coordination of several 
specialized agents, each fulfilling a distinct role. Figure 3 illustrates the 
organization and interaction among these agents. 

Agent A is responsible for classifying user prompts by identifying specific use-
cases. Based on the classification provided by Agent A, a sequence of 
subsequent agents is activated to execute their respective tasks. Agent B searches 
the Vector Database for API entries relevant to the user's query, while Agent E 
queries the Vector Database for macros relevant to the use-case. For the update 
of deprecated code, Agent F identifies modifications within the Vector Database 
Macro API affecting the specified APIs. 

Agent C synthesizes code by utilizing the relevant APIs retrieved by Agent B 
and the examples provided by Agent E. This generated code is then refined by 
Agent D, which executes the code with a compiler, processes any resulting error 
messages, and interacts with the Graph Database API to address and correct 
issues. For the update of deprecated code, Agent G updates any uploaded macros 
based on the information gathered by Agent F. 

Finally, Agent H compiles a summary of all changes, facilitating user review 
and enabling the generation of comprehensive user-guide documentation. Note 
that Agents B, C, E, G, and F employ Retrieval-Augmented Generation (RAG) 
and few-shot learning techniques. 

 

Figure 3. Multi-Agent System architecture for automated code generation, adjustment, and 
update. 



We elaborate on the functionality of the Agent D, which incorporates a self-
correcting mechanism, on a concrete example. Drawing upon methodologies 
from both the CRITIC [5], Cross-Refine [6] and Self-Refine [7] frameworks, our 
MAS allows agents to interact with external tool, Java compiler, to iteratively 
verify and correct the outputs autonomously. This multi-step approach enhances 
the accuracy of generated Java code and responses, ensuring continuous 
improvement in performance. 

Agent D validates and refines code by compiling and assessing error messages. 
The agent uses iterative refinement techniques to address the issues identified 
during these verification steps, similar to the principles used in CRITIC and Self-
Refine. This iterative process enables agent to produce outputs of higher quality 
without the need for extensive retraining or additional supervision. The agents 
utilize few-shot prompting and RAG to enhance their performance, much like in 
CRITIC and Self-Refine, ensuring that they can adapt to various tasks and 
environments dynamically. 

 

Figure 4. Java Macro with syntactical errors generated by an Agent using the data from 
Vector DB, later corrected by another Agent using the data from Graph DB. 

6. Conclusion 

In conclusion, this article has explored the topic of how Generative AI 
combined with advanced data management techniques can be applied to 
automating the CFD workflow within CAE tools. Additionally, the study 
demonstrated the current state of the MAS framework, which purpose is 
automatic macro generation, adjustment, and maintenance of macros. It 
describes alternative methods how to deal with challenges related to the 
confidentiality of API data and the organization of proprietary data. Important 
to notice that the framework is still in a prototype phase and remains under 
investigation. 

Future research directions might focus on creating an evaluation framework to 
estimate the precision of generated macros. A promising direction for future 
research might be fine-tuning of LLMs to improve their ability to generate 
code based on the gathered examples [11].  
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