
CFD Workflow Automation with Generative AI and
Specialized Approaches for Storing and Querying Data

Dr. M. Bonner
Siemens Digital Industries Software, Belgium

Abstract

Today's software tools are extensive and continually expanding, incorporating
more and more features from the CFD area, which makes the tools powerful, but
often leaves users lost in the innumerable settings. Consequently, users have to
deal with customizable repetitive tasks operating on SW tools, invest significant
amount of time to search for a proper API to write and to adjust macros, which
is a backbone of any execution action. Additionally, due to the fact that the tool
undergoes continuous updates and improvements, there are deprecated API,
which have to be adjusted manually after a user switch to a new version. With
the raise of Generative AI and Large Language Model (LLM) users expect an
LLM-based assistant for code generation, enhancement and explanation
operations and, surely, dealing with deprecated code. Indeed, the integration of
Generative AI and LLM agents presents significant opportunities for workflow
automation and enhancing efficiency. However, there are challenges in
application of Generative AI to the area of code generation. First, APIs are kept
confidential, which means that advertised LLMs are not familiar with the syntax.
The second challenge is organising the existing data to feed AI to get
sophisticated results. By employing specialized approaches for storing and
querying source data, such as Vector-based DataBases (Vector DB) and Graph-
based DataBases (Graph DB), overall precision of generated code can be
improved. This article explores the innovative application of Generative AI
combining it with advanced data retrieval mechanisms from Vector DBs and
Graph DBs to automate the CFD workflow. It specifically focuses on the use
case of employing LLM agents for macro generation, macro adjustments and
macro updates within CAE Tools.

1. Introduction

As software tools evolve and expand their capabilities, they incorporate
increasingly complex features that address CFD challenges, but simultaneously
introduce a layer of complexity for users. This complexity arises from the vast
number of settings and options that users must navigate, often leading to
difficulties in managing and optimizing repetitive tasks. A significant portion of
the user experience CAE software involves writing, adjusting, and maintaining

macros, which serve as the backbone for executing repetitive actions within the
tools. The continuous software updates and improvements lead to modifications
in APIs, which result in the necessity to deal with deprecated APIs. In these
scenarios macros must be manually adjusted each time a new version is released.

Recent advancements in Generative AI and LLMs offer innovative solutions to
address these challenges by automating macro generation, macro adjustment,
and macro maintenance tasks. Users now expect these intelligent agents to assist
in the initial creation of code, refining it, explaining its functionality, and
updating it to comply with newer software versions. The potential of Generative
AI and LLMs is particularly significant in reducing the effort required for
manual interventions, thereby optimizing the workflow and increasing
productivity. The integration of such technologies promises a paradigm shift in
how users interact with complex software tools.

Despite the promising capabilities of Generative AI and LLMs, several
challenges delay their seamless integration into automated code generation for
specific software environments. One significant challenge is the proprietary
nature of commercial software APIs and existing examples, which limits the
familiarity and training of widely advertised LLM models [1] with the specific
syntax and functionality of these APIs. This confidentiality restricts the
effectiveness of LLMs when generating or adjusting macros tailored for these
software tools.

Another critical challenge lies in the organization and accessibility of existing
data required to train the AI models to produce sophisticated and accurate results.
Effective code generation by LLMs relies heavily on the quality and structure of
the available data. Poorly organized data, which might include missing
descriptions, missing examples, lack of documentation on deprecated APIs,
storage in the format hard for the perception without additional context, can
significantly compromise the precision of generated code, resulting in
suboptimal or erroneous outputs. Thus, it is essential to employ advanced data
retrieval mechanisms to enhance the data retrieval process.

This article addresses these challenges by exploring approaches to improve the
integration of Generative AI in automating CFD workflows. Specifically, it
investigates the combination of Generative AI with advanced data management
techniques, such as Vector and Graph DBs, and the new trend of multi-agent
systems to optimize the retrieval and utilization of source data. Vector DBs can
store and retrieve data effectively based on similarity, while Graph DBs provide
a structured and interconnected way to manage the relationship between data
points. Together, these technologies can enhance the accuracy and relevance of
the generated code.

The focus of this study is on the practical application of these combined
technologies within CAE Tools. By employing LLM agents for macro

CFD Workflow Automation with Generative AI

generation and adjustments, the study aims to demonstrate the architecture of a
research prototype for automated code generation, adjustment and update. The
methodologies and results presented in this article offer valuable insights on
practical solutions for effectively integrating Generative AI into CFD
workflows.

2. Automation Process with Macros

Automation capabilities as available in many CAE software tools have
significantly transformed user engagement with CFD simulations. This
advancement offers a more streamlined and efficient methodology for
addressing engineering challenges and is valued by customers [2]. The software
allows extensive customization capabilities through its APIs, enabling users to
tailor the simulation environment to their specific needs. The software's scripting
capabilities allow users to automate everything from geometry import through
to post-processing. Some users heavily rely on these automation tools (see
Error! Reference source not found.), creating macros and scripts to handle
recurring tasks and to reduce user errors. This massively enhances productivity
and guarantees consistency across projects.

Figure 1. Automation in CAE Tools.

Any sophisticated software undergoes continuous updates and improvements.
As new features are introduced and existing functionalities are enhanced, certain
API methods and classes become outdated and are marked for future removal.
One common challenge users face is dealing with such deprecated code.

For users, this means that their existing scripts and customizations may contain
deprecated code that needs to be revised. The accumulation of such code is a
common scenario in long-term projects, where initial scripts were written using

older versions of the API. As the software evolves, these scripts must be updated
to align with the current standards, ensuring optimal performance and avoiding
potential issues.

Another frequently encountered challenge in the use of automation is the
generation and, more commonly, the modification of macro code. Typically, a
user initially records a macro and subsequently adapts it for a specific
application. The documentation may contain elements from more than 10000 of
classes and methods, which have often insufficient documentation and are
lacking application examples for effective semantic search.

Despite of all inconveniences
mentioned above, over time, utilizing
macros in CAE software proves to be
significantly more time-efficient
compared to the repetitive process of
manual clicking (Figure 2. Comparison of
time spent: manual processes vs. Java
MacrosFigure 2). However, one must
consider the ongoing cost of
maintaining these scripts, as
adjustments are often necessary due to
the deprecation of code in software
updates. This could result in additional
workload to ensure that scripts remain functional, potentially offsetting some of
the initial time savings. Nevertheless, the efficiency gains in long-term project
execution generally outweigh the periodic maintenance efforts required to keep
the automation up-to-date.

3. Related Work

The application of LLMs to automate code generation has gathered substantial
attention across various domains, such as code generation, code refinement,
legacy code modernization, and their integration into automated workflows.

One significant area of research involves generating code by retrieving relevant
documentation. [3] introduced 'DocPrompting,' a technique, where LLMs
dynamically query code snippets from documentation to generate the code. This
approach highlights the potential of LLMs to bridge the gap between LLMs
trained on publicly available code and extensive, often complex, confidential
API documentation, exemplifying how leveraging existing documentation can
enhance the accuracy of generated code.

Furthermore, the inherent capability of LLMs to act as few-shot learners, as
demonstrated by [4]. By leveraging minimal examples, LLMs can adapt to new

Figure 2. Comparison of time spent: manual
processes vs. Java Macros.

CFD Workflow Automation with Generative AI

tasks with surprisingly high proficiency, which is particularly beneficial for
generating code in diverse domains without extensive retraining.

In addition to generating initial code snippets, recent studies have focused on
refining and improving the generated code using AI agents. For instance, [5]
proposed 'CRITIC,' a system where LLMs iteratively interact with tools to
critique and enhance the generated code. Similarly, [6] introduced 'Cross-
Refine,' an approach employing tandem learning to generate and iteratively
refine natural language explanations, which can be analogously applied to code
generation. Additionally, motivated by how humans refine their written text, [7]
introduced Self-Refine, an approach for improving initial outputs from LLMs
through iterative feedback and refinement. The main idea is to generate an initial
output using an LLM; then, the same LLM provides feedback for its output and
uses it to refine itself, iteratively.

Modernizing legacy code is another critical area, where LLMs demonstrate
significant potential. [8] explored the challenges and opportunities in utilizing
LLMs for updating and maintaining legacy codebases, focusing on the
generation of updated documentation and code adjustments.

Overall, the related work in leveraging LLMs for code generation spans multiple
innovative directions, from initial code generation based on document retrieval
and few-shot learning to iterative refinement and legacy code modernization. In
our work we are forced to incorporate several techniques in the form of multi-
agent system.

4. Data Storage and Retrieval Mechanisms

LLMs have demonstrated remarkable capabilities in generating code, but their
performance can be significantly enhanced by incorporating retrieval-
augmented generation (RAG) [9], [10] and few-shot prompting techniques [4].
These approaches are particularly crucial, when LLMs are not trained on
confidential or permanently extended data, as they enable the models to
dynamically access relevant information from external sources. Vector and
Graph DBs play an important role in this context, enabling efficient and fast
retrieval of embeddings that capture semantic similarities within the data.

RAG techniques enhance LLM performance by supplementing their generative
capabilities with dynamically fetched, contextually relevant information. For
instance, when an LLM is not pre-trained on specific confidential datasets, RAG
allows it to retrieve and integrate up-to-date, relevant data during the generation
process. This dynamic retrieval ensures that the LLM's responses remain

accurate and contextually appropriate, providing an effective workaround for
scenarios, where pre-training on certain data is not feasible.

Few-shot learning enables LLMs to quickly adapt to new tasks and domains
based on just a few examples, without the need for extensive task-specific
training. Vector and Graph DBs optimize this process by efficiently storing and
indexing examples, allowing the LLM to access relevant resources quickly. This
capability is especially valuable, when the LLM lacks prior exposure to specific
confidential data, ensuring context-aware learning.

Vector DBs are good in handling high-dimensional data and computing semantic
similarities between data points. They convert data into embeddings, which are
numerical representations of the data in high-dimensional space. This allows
similarity search using metrics like cosine similarity or Euclidean distance. Their
primary strength lies in managing and querying large volumes of unstructured
data, making them ideal for tasks like document similarity search.

On the other hand, Graph DBs are designed to model and navigate relationships
between data points through nodes and edges. Their strength lies in representing
and querying relationships and structures within the data. This makes them
useful for tasks like exploring connections within the API elements. Thoughtful
extraction from the API documentation can also add additional connections,
when mapping out the relationships between different entities for a more in-
depth contextual comprehension. For example, when mapping out the
relationships between elements for a more in-depth contextual comprehension
more direct links could be retrieved.

Overall, the integration of Vector and Graph DBs is essential for LLMs to
leverage RAG and few-shot learning techniques effectively, maintaining
performance and scalability even, when trained data is limited or unavailable.

5. Multi-Agent System Architecture

Multi-Agent Systems (MAS) provide a framework for addressing complex tasks
through the utilization of multiple interacting intelligent agents. These agents,
which may comprise software autonomous units, which operate independently
within a given environment. The fundamental characteristics of MAS include
autonomy, social ability to interact with other agents, reactivity to environmental
changes, and proactiveness in goal achievement.

The advantageous features of MAS include scalability, robustness, and
flexibility. MAS system can be easily scaled by adding more agents, which
enhances its capacity to handle complex tasks. Furthermore, the failure of a
single agent does not affect the overall performance, ensuring robustness. The
flexibility of MAS allows for dynamic adaptation to changing environments and
tasks, making them suitable for systems that require collaborative autonomy to

CFD Workflow Automation with Generative AI

achieve collective goals. This paradigm is particularly effective for complex
problem-solving while maintaining user-friendly interaction through natural
language interfaces.

Here, we outline one way of how MAS implemented to enable the dynamic
creation, modification, and updating of code through the coordination of several
specialized agents, each fulfilling a distinct role. Figure 3 illustrates the
organization and interaction among these agents.

Agent A is responsible for classifying user prompts by identifying specific use-
cases. Based on the classification provided by Agent A, a sequence of
subsequent agents is activated to execute their respective tasks. Agent B searches
the Vector Database for API entries relevant to the user's query, while Agent E
queries the Vector Database for macros relevant to the use-case. For the update
of deprecated code, Agent F identifies modifications within the Vector Database
Macro API affecting the specified APIs.

Agent C synthesizes code by utilizing the relevant APIs retrieved by Agent B
and the examples provided by Agent E. This generated code is then refined by
Agent D, which executes the code with a compiler, processes any resulting error
messages, and interacts with the Graph Database API to address and correct
issues. For the update of deprecated code, Agent G updates any uploaded macros
based on the information gathered by Agent F.

Finally, Agent H compiles a summary of all changes, facilitating user review
and enabling the generation of comprehensive user-guide documentation. Note
that Agents B, C, E, G, and F employ Retrieval-Augmented Generation (RAG)
and few-shot learning techniques.

Figure 3. Multi-Agent System architecture for automated code generation, adjustment, and
update.

We elaborate on the functionality of the Agent D, which incorporates a self-
correcting mechanism, on a concrete example. Drawing upon methodologies
from both the CRITIC [5], Cross-Refine [6] and Self-Refine [7] frameworks, our
MAS allows agents to interact with external tool, Java compiler, to iteratively
verify and correct the outputs autonomously. This multi-step approach enhances
the accuracy of generated Java code and responses, ensuring continuous
improvement in performance.

Agent D validates and refines code by compiling and assessing error messages.
The agent uses iterative refinement techniques to address the issues identified
during these verification steps, similar to the principles used in CRITIC and Self-
Refine. This iterative process enables agent to produce outputs of higher quality
without the need for extensive retraining or additional supervision. The agents
utilize few-shot prompting and RAG to enhance their performance, much like in
CRITIC and Self-Refine, ensuring that they can adapt to various tasks and
environments dynamically.

Figure 4. Java Macro with syntactical errors generated by an Agent using the data from
Vector DB, later corrected by another Agent using the data from Graph DB.

6. Conclusion

In conclusion, this article has explored the topic of how Generative AI
combined with advanced data management techniques can be applied to
automating the CFD workflow within CAE tools. Additionally, the study
demonstrated the current state of the MAS framework, which purpose is
automatic macro generation, adjustment, and maintenance of macros. It
describes alternative methods how to deal with challenges related to the
confidentiality of API data and the organization of proprietary data. Important
to notice that the framework is still in a prototype phase and remains under
investigation.

Future research directions might focus on creating an evaluation framework to
estimate the precision of generated macros. A promising direction for future
research might be fine-tuning of LLMs to improve their ability to generate
code based on the gathered examples [11].

CFD Workflow Automation with Generative AI

7. References

[1] „ChatGPT,“ OpenAI, 2023. [Online]. Available:
https://chat.openai.com/chat.

[2] „Best CFD Simulation Software,“ Siemens, 2024. [Online]. Available:
https://blogs.sw.siemens.com/simcenter/best-cfd-simulation-software/),.

[3] Shuyan Zhou et al., „DocPrompting: Generating Code by Retrieving the
Docs,“ in arXiv, 2023.

[4] Tom Brown et al., „Language Models are Few-Shot Learners,“ in arXiv,
2020.

[5] Zhibin Gou et al., „CRITIC: Large Language Models Can Self-Correct
with Tool-Interactive Critiquing,“ in arXiv, 2024.

[6] Qianli Wang et al., „Cross-Refine: Improving Natural Language
Explanation Generation by Learning in Tandem,“ in arXiv, 2024.

[7] Aman Madaan et. al., „Self-Refine: Iterative Refinement with Self-
Feedback,“ in arXiv, 2023.

[8] Colin Diggs et al., „Leveraging LLMs for Legacy Code Modernization:
Challenges and Opportunities for LLM-Generated Documentation,“ in
arXiv, 2024.

[9] Yunfan Gao et al., „Retrieval-Augmented Generation for Large Language
Models: A Survey,“ in arXiv, 2024.

[10] „A Simcenter personal consultant realized with Generative AI,“ Siemens,
2024. [Online]. Available: https://blogs.sw.siemens.com/art-of-the-
possible/a-simcenter-personal-consultant-realized-with-generative-ai/.

[11] Maria Bonner et al., „LLM‐based Approach to Automatically Establish
Traceability between Requirements and MBSE,“ INCOSE International
Symposium, Bd. 34, pp. 2542-2560, 2024.

