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Abstract 

The fatigue strength of spring-hard components is significantly influenced by 
the manufacturing process. According to the FKM [1] guideline for springs, it 
is possible to evaluate the fatigue strength of such components, whereby 
manufacturing process parameters such as shot peening, heat treatment and the 
residual stresses induced by the manufacturing process play a crucial role. 
Residual stresses that are induced during the manufacturing process have a 
direct effect on the stress distribution and thus on the fatigue life of the 
components. However, the exact determination of these residual stresses is 
associated with considerable challenges, as detailed and time-consuming 
manufacturing simulations are usually required for this. In order to reduce this 
effort, an innovative approach was developed that efficiently and precisely 
determines the process-induced residual stresses. This method is based on 
performing a large number of non-linear calculations in order to generate a 
broad database of residual stresses in round wires after the coiling process. 
Based on this data, a convolutional neural network was trained that can 
precisely predict the stress profiles in the wire cross-section after coiling. The 
input parameters used in the computations include the spring geometry and the 
material class of the spring-hard materials. The output of this surrogate model 
is the stress state in the wire cross- section and thus provides a reliable basis for 
taking the residual stresses into account in the fatigue prediction. A significant 
benefit of this method is the possibility of combining this process step with 
other manufacturing processes, such as shot peening and heat treatment, and 
also taking their influence on the residual stress distribution into account. This 
creates a complete view of the process-induced residual stresses along the 
entire production chain. The method presented allows a more efficient and 
comprehensive consideration of residual stresses when determining the fatigue 
strength of spring-hard components. This not only improves the accuracy of 
fatigue strength evaluations, but also enables the manufacturing processes to be 
optimized regarding the fatigue strength and durability of the components. This 
approach therefore represents a significant advance in the field of fatigue 
strength analysis and optimization. 

 



1.  Importance of residual stresses for fatigue life calculation  

Residual stresses play a decisive role in the fatigue strength of components. 
They influence the local stress distribution and can have either harmful or 
beneficial effects. Compressive residual stresses have a crack-inhibiting effect 
and increase the fatigue life, while tensile residual stresses promote crack 
formation and reduce fatigue strength. The targeted introduction of residual 
compressive stresses through processes such as shot peening, can significantly 
extend the fatigue life of mechanical components. Precise analysis and control 
of residual stresses is therefore essential for optimizing the fatigue resistance of 
technical components. 

 

Figure 1:  Mean-stress displacement on a spring [2]. Representation in the Haigh 
diagram in direction of the 1st principal stress. Due to the superposition of load- and 
residual stresses, the allowed stress amplitude increases from 308 MPa to 463 MPa. 

Figure 1 shows the increase in the permissible stress amplitude due to the 
influence of residual stresses using shot-peening process. However, it is not 
only this process step that influence the fatigue strength caused by residual 
stresses, but also the entire manufacturing process, starting with the spring 
coiling process. 

2. Development of a neural network model for the prediction of residual 
stresses 

2.1 Numerical calculations to create a residual stress database 

In order to analyse the effects of the coiling process on the resulting residual 
stresses in spring-hard wires, numerous non-linear (geometry, contact, 
material) calculations were performed. For this purpose, a parametric model 
was set up that allows typical spring geometries to be created (cf. Figure 2). 



These calculations are based on the finite element method (FEA) and take into 
account different material grades, strengths and, of course, spring geometries. 
Various parameters such as wire diameter, coil diameter, pitch angle and 
material properties were systematically varied in order to generate a 
comprehensive database. 

 

Figure 2:  Parametric FEA model used for generating the residual stress database. 

The implicit numerical simulations show that the residual stresses are strongly 
dependent on the geometry and, of course, the nonlinear mechanical properties 
of the material (including strain hardening). For example, a smaller spring 
index generally leads to higher residual tensile stresses on the inside of the 
coils; the stress distribution with a high pitch exhibits a complex superposition 
of residual stresses from torsion and bending. In addition, hardening effects 
and springback phenomena also have a significant influence on the resulting 
stress distributions. 

2.2 Training of a Neural Network (NN) 

Based on the created database, a Neural Network (NN) was developed, which 
is able to predict the residual stress distribution in the wire cross-sectional area. 
These approaches have proven to be powerful in many areas of data analysis, 
especially when it comes to recognizing complex patterns in multidimensional 
data. 

The following input parameters were used to train the NN: 

• Geometry: spring index, pitch 



• Material: material grade, strength 

The output values of the model are the residual stresses within the wire cross-
section (cf. Figure 3). To maximize model accuracy, the network was trained 
with an extensive data set generated from several hundred FEA simulations. 

 

Figure 3:  The stress tensor invariants form the output of the neural network. 

The NN was validated by comparing the predicted stress distributions with 
numerical reference values. This showed that the model is capable of 
predicting the residual stresses with high precision. The mean absolute error 
between prediction and numerical simulation was in the order of 50 MPa, 
which is sufficiently accurate for technical applications and therefore suitable 
for real-time predictions and decision-making. 

 

Figure 4:  Comparison of the predicted coiling stresses and the ground truth (FEA). 

3. Integration of the method into fatigue strength assessment and 
production optimization 

3.1 Combination with other manufacturing steps 

A major advantage of the approach presented is that it does not have to be 
considered in isolation but can be seamlessly integrated into the entire spring 
manufacturing process chain. In particular, the combination with other 
manufacturing steps such as shot peening and heat treatment offers great 
potential for optimizing fatigue strength. 



Heat treatment: The resulting stresses from the coiling process can be further 
influenced by targeted heat treatment processes as seen in Figure 5. A more 
favourable stress distribution can be achieved through a model-based 
adjustment of the process parameters, which reduces the risk of stress 
concentrations.  

Shot peening: This process generates additional residual compressive stresses 
on the component surface, which inhibits crack propagation and increases 
fatigue life. The neural network predicts the production history and enables the 
specific consideration of the shot peening effects on the residual stresses. 

 

Figure 5:  Predicted residual stresses of the wire cross-section (left). Stress distribution 
with subsequent heat treatment (middle). Stress profile with and without heat 

treatment (right). 

3.2 Improving fatigue life predictions 

The ability to precisely determine the process-induced residual stresses has far-
reaching effects on the accuracy of fatigue life calculations. The FKM 
guideline for springs already takes into account the effect of residual stresses, 
but this is often done on the basis of simplified assumptions [1]. The method 
presented here allows realistic stress conditions to be incorporated into the 
calculation, which significantly improves and accelerates the predictions. 

In addition to improved strength assessment, the method opens up new 
possibilities for the targeted optimization of manufacturing processes. For 
example, the neural network can be used to identify the process parameters that 
lead to the most favourable residual stresses for a given spring geometry and 
material grade. This enables data-based process optimization, which increases 
both component quality and production efficiency. 

4. Extended modelling of the residual stress distribution: Stress mapping 

Up to now, the individual prediction of residual stress has been presented by 
specifying geometry and material. This method works efficiently and precisely 
but is limited to individual cross-sections. 



For springs with a complex geometry, such as variable coiling pitch and spring 
index, it is necessary to obtain a complete description of the residual stress 
state over the entire spring geometry. This allows load simulations to be carried 
out considering the residual manufacturing stresses. 

An effective mapping strategy is essential for this in order to transfer the 
predicted individual cross-sectional stresses to the entire component with a 
complex coiling pitch. 

For this purpose, a mapping tool was developed that allows sweep-capable 
components - as is the case with wire components such as springs - to be 
assigned the calculated residual stresses depending on the prevailing pitch 
structure and output as an Abaqus input file (see Figure 6). This allows further 
calculations to be performed, considering the complete manufacturing history. 

 

Figure 6:  Workflow to map the complete predicted residual stress state by the neural 
network on a complex sweepable 3D body to perform further FEA calculations 

considering the manufacturing history. 

5. Conclusion and outlook 

The method presented for determining the process-induced residual stresses in 
spring-hard components represents a significant advance in fatigue strength 
assessment. By combining numerical simulations with machine learning, a 
powerful tool has been developed that enables rapid and precise prediction of 
stress distributions, especially in wire parts. 

The possibility of integrating these stresses into the fatigue calculation and 
process optimization opens up new potential for improving component quality 
and fatigue life.  



Experimental validation of the predicted stress states using measurement 
methods such as the X-ray diffraction method is currently in progress. 

Overall, it is clear that data-driven approaches in manufacturing technology 
have great potential for innovation and can make an important contribution to 
the further development of fatigue strength analysis and component design. 
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