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Abstract 

Today, engineering processes rely on structural analysis using computer-aided 
design (CAD). This typically involves discretizing the geometry to apply the 
finite element method (FEM) solving the partial differential equations (PDEs) 
of elasticity. The accuracy of the FEM depends on the resolution of the dis-
cretization. However, a high resolution typically leads to slower runtime per-
formance, because each element adds to the computational cost. Using a CAD 
geometry and specified load cases, computing the elasticity PDE requires mul-
tiple steps, each of which can become a bottleneck if executed on the CPU. For 
fast and automated computation, we suggest a GPU-accelerated adaptive simu-
lation pipeline for structural analysis. Due to their capabilities in representing 
complex geometries and facilitating robust local adaptivity, unstructured tetra-
hedral meshes are well-suited for mesh adaptation. Since previous work pre-
sented fast simulation (Weber et al. [1]), massively parallel optimization and 
remeshing of unstructured tetrahedral meshes (Ströter et al. [2], [3]), and data 
structures for massively parallel matrix assembly algorithms (Mueller-Roemer 
[4]), this work focuses on a-posteriori adaptive mesh refinement of discretized 
models. This closes a remaining gap towards a fully automated GPU-acceler-
ated adaptive structural analysis for CAD models. Our method achieves a 
speedup of 2 × to 10 × compared to the open-source mesh adaptor MMG [5] 
for tetrahedral meshes. By shifting the bottleneck away from mesh adaptation, 
the overall computation time of certain structural analysis tasks can be reduced 
by half. It utilizes the GPU for error estimation and sizing field processing. As 
a result, the proportion of these steps in the overall runtime is negligible. With 
heuristic adaptation and little data transfer between CPU and GPU, we 
achieved fast mesh adaptation to a sizing field. In combination with the fast 
structural analysis by Weber et al. [1], our pipeline quickly determines struc-
tural analysis results close to the so-called mesh-independent solution without 
laborious manual intervention. 

1. Introduction 

In structural analysis, we ideally want a “one-click solution” for any given 
CAD model and any given load case, but this implies many different internal 
steps. First, most structural analysis methods require a discretized model to 



apply the FEM, so a mesh generator is necessary. The FEM numerically com-
putes a solution to the given problem, but this solution is only as accurate as 
the underlying discretization allows. To obtain an accurate solution, either 
manual input to the mesh generator or (often partially supervised) a-posteriori 
adaptive refinement needs to be applied. Because this process is iterated until a 
convergence criterion is met, multiple time-consuming simulations and mesh 
adaptations are common. Due to adaptivity to CAD surfaces and mesh genera-
tion being out of scope for this work, we focus on situations where a discrete 
mesh already exists and compare GPU-accelerated adaptive mesh refinement 
to the well-established open-source mesh adaptor MMG. 

2. Background and related work 

Adaptive mesh refinement 

 

Figure 1:  Exemplary pipeline for iterative adaptive mesh refinement. The scope of this 
work is marked in red. 

The typical procedure for a-posteriori adaptive mesh refinement involves sev-
eral steps. As shown in fig1, the input is usually a relatively coarse mesh to en-
sure fast simulation times. After the initial simulation, error estimation is used 
to compute a sizing field which gives us an estimate of the optimal element 
size for every part of the mesh. To determine which specific elements of the 
mesh should be subdivided or removed, a multitude of marking strategies for 
element selection exist. As a last step, splitting edges marked for refinement 
and collapsing edges marked for removal completes the “Solve Estimate Mark 
Refine Loop” (see [6]). As mesh quality usually degrades over multiple refine-
ment steps, vertex relocation is applied to optimize element shape. 

Error estimation 

In three dimensions, structural analysis on a mesh usually results in a discrete 
displacement field per vertex 𝑢!(v") → ℝ#. This field is used to derive other 
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physical quantities of interest, e.g., values for stress 𝜎! and strain 𝜀!, for all el-
ements in the mesh. Continuous fields such as 𝑢:ℝ# → ℝ# need to be derived 
through interpolation. Among others, there are two widely used error estima-
tion methods to assess the accuracy of these results, one by Kelly et al. [7] and 
one by Zienkiewicz & Zhu [8]. For our work, we chose the latter one (see [9] 
and [10] for further information). 

Sizing fields 

As shown by Lee and Lo [11], a per-element refinement index 𝜌! can be de-
rived from error estimation. For every cell in the current mesh, it tells us how 
many elements should replace it, so that a target error estimation 𝑒$ will be sat-
isfied after refinement. 𝜌! can be converted to a sizing field 𝑆! by several 
means (see [11] for more detail). As the volume of solids in R³ scale with size 
cubed, the volume-based method of computing 𝑆! from 𝜌! is based on dividing 
the size of the i-th tetrahedron by 1𝜌"! . This results in a per-element sizing field 
and averaging over the one-ring neighborhood of any given vertex will yield 
the sizing field 𝑆!. 

In the context of adaptive refinement, the mesh will change after every refine-
ment operation. Due to its high performance on tetrahedral meshes, the octree 
linear bounding volume hierarchy (OLBVH) acceleration structure by Ströter 
et al. [12] is used to transfer 𝑆! between meshes of different refinement stages, 
so 𝑆! only needs to be computed once and stays valid until the adaptation is 
complete. 

Mesh data structure 

We use the mesh data structure by Mueller-Roemer and Stork [13], [4], which 
integrates concepts of Mueller-Roemer et al.’s ternary compressed sparse row 
(TCSR) volumetric mesh data structure [14] and Zayer et al.’s GPU-adapted 
structure for unstructured grids [15]. This combination results in a specialized 
data structure for homogeneous simplicial complexes, such as triangular or tet-
rahedral meshes. The fundamental representation of the mesh is a set of node 
positions and an 𝑛 × (𝑑 + 1) array of ordered node indices, where 𝑛 is the 
number of triangles/tetrahedra, and 𝑑 is the dimension of the mesh. Additional 
element relationships are dynamically computed as needed, using GraphBLAS-
inspired [16] approaches and cached in either binary or ternary CSR format. 
This data structure optimizes parallel access and efficient element neighbor-
hood queries, enabling applications such as GPU-accelerated system matrix as-
sembly [13], [4] and GPU-accelerated mesh optimization [2], [17]. In-place 
modification is limited to adjustment of node positions; addition or removal of 
elements requires creating a new mesh. However, GPU-parallel mesh modifi-
cation generally requires a double-buffered approach, as fine-grained global 
synchronization on the GPU incurs significant costs. 



Simulation 

For simulation, we use, but are not limited to using, RISTRA (Rapid Interac-
tive Structural Analysis), which was previously presented by Weber et al. [1]. 
As RISTRA uses the same mesh data structure for GPU-accelerated system 
matrix assembly [13], [4] and a highly optimized, GPU-accelerated, iterative 
solver [18], [19], low-overhead interaction between the adaptive mesher and 
the simulation is possible. 

Vertex relocation 

A recent development for a-priori mesh refinement is the harmonic optimiza-
tion, by Alexa [20]. It is a fast alternative to other r-refinement methods such as 
the optimal Delaunay triangulation (ODT, see [21]), Laplacian smoothing, or 
centroidal Voronoi tessellations (CVT). For our work, we use the iterative 
GPU-parallel modification of the harmonic optimization algorithm presented 
by Ströter et al. [2]. Coloring is used to obtain sets of vertices where the verti-
ces of each set can be processed in parallel. The locally optimal vertex position 
is found through gradient descent regarding the harmonic index (see [20]). 
Brent’s method [22] in an inversion free interval ensures fast root finding and 
proper orientation. To preserve the surface, all gradients of vertices on ridges 
or planar faces are projected onto the boundary (see [23]). 

Subdivision 

 

Figure 2:  Subdivision is achieved by pattern-based splitting. 

On input of the refinement marking, a massively parallel subdivision algorithm 
refines the marked elements. The subdivision refinement algorithm supports 
different subdivision patterns to mitigate overrefinement issues. fig2 shows the 
available subdivision patterns. If none of the supported patterns applies, the al-
gorithm falls back to the regular pattern [24]. To guarantee a consistent trian-
gulation, the algorithm checks edge/face neighbors propagating the subdivision 
patterns until adjacent subdivision patterns match. As shared faces have to be 
subdivided consistently during massively parallel application of subdivision 
patterns, the algorithm applies a global ordering of face vertices for subdivid-
ing faces [25].  

1 → 2 1 →3 1 →4a 1 →4b 1 →4c 1 →8
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Coarsening 

Collapsing edges in the unstructured tetrahedral mesh eliminates elements to 
coarsen the local resolution of the mesh. For massively parallel processing, 
Ströter et al. [3] determine a dense set of conflict-free edges for collapsing. To 
achieve good results, the edge collapse operations is prioritized by a quality 
function. The position for the remaining vertex is computed based on the qual-
ity function. Edge collapse operations on the surface are only performed if they 
do not change the shape. 

Convergence criteria 

Common convergence criteria include metrics such as stress (e.g., von Mises 
stress), or displacement at specific locations. A possible way to determine 
when to stop the adaptive refinement process is to use a gradient threshold such 
as a 3% change between the value on the last and the current mesh. For dis-
placement convergence, this can be fully automated, while for stress conver-
gence, singularities need to be accounted for. In many practical cases, the val-
ues for stress or displacement are relevant to solve a derived optimization goal 
such as determining the required thickness of a steel bar to ensure its maximum 
displacement remains below 2 mm under a 100 kg load. These cases can be au-
tomated through specifically tailored routines which internally rely on the pre-
viously mentioned criteria. 

3. Approach 

Our approach focuses on GPU-parallel methods for error estimation, sizing-
field processing and marking strategies. The error estimator by Zienkiewicz 
and Zhu [8] is local by design, so the per-element refinement index 𝜌! as well 
as the resulting sizing field can be computed in parallel. 

The sizing-field is a simple scalar field and therefore, most operations are com-
puted in parallel. The following is a short list of useful operations for sizing 
fields which we use in our approach. Smoothing is a method to reduce steep 
gradients. Gradation is used to set a limit for the difference in sizes between 
neighboring edges (see e.g. [26]) by smoothing the sizing-field of all vertices 
and their neighbors above a given threshold. Mesh-density control (a-priori) is 
accomplished by multiplying 𝑆! with a factor for a set of vertices (e.g., on the 
surface). The number of elements resulting from mesh adaptation to 𝑆! can be 
estimated by computing 𝜌! from 𝑆! and summing over all 𝜌!. This is espe-
cially useful for targeting a specific overall number of tetrahedra in the refine-
ment process. Edge lengths can be constrained in the output by clamping 𝑆! 
between a minimum and a maximum value. In cases where singularities are 
identified (e.g., SPCs with zero displacement after the structural analysis), re-
placing 𝑆! for these vertices with their average edge length will ignore the esti-
mated sizing field at these locations and prevent overrefinement. Because 



singularities lead to high estimated errors in their surroundings, this process is 
performed gradually for the n-neighborhood. 

To assemble all the above into an adaptive refinement procedure, we use strate-
gies to mark specific edges for subdivision or removal. An obvious choice is to 
split any edge 𝐸 where the average sizing field for that edge is smaller than 
𝐿𝑒𝑛𝑔𝑡ℎ(𝐸) √2⁄  and remove any tetrahedron where the average sizing field for 
at least one edge is longer than 𝐿𝑒𝑛𝑔𝑡ℎ(𝐸) × √2. As subdivision does not en-
sure the improvement of low-quality tetrahedra and increases the tetrahedron 
count, we also attempt to remove low-quality elements performing edge col-
lapse operations. To identify which elements should be removed, we use the 
scale invariant harmonic index 𝜂%& (smaller is better, analogous to [20]) 

𝜂%& =
'
|)|
@∑ 𝑎"##

"*$ , 

where 𝑣 is the tetrahedron volume and 𝑎" is the area of the i-th face. It has a 
lower bound of 𝜂%&,,"- = 1.5 × √27" × √2 ≈ 4.84 for regular tetrahedra and 
we consider all tetrahedra with more than 3 × 𝜂%&,,"- to be ill-shaped, so all 
their edges will be marked for collapsing. There are still many other possible 
strategies left to reduce undesirable patterns in the resulting mesh, but we leave 
the exploration of these to future research. 

Mesh adaptation to a sizing field 

After sizing-field computation, we use a heuristic to control the execution order 
of operations. As we support three operations, harmonic optimization, subdivi-
sion, and coarsening, the parameters 𝛽!, 𝛽., and 𝛽/ represent the necessity of 
the respective operations. An operation is considered significant if the relative 
change to the number of elements is above a set threshold. If an operation was 
insignificant, the necessity for that operation will be reduced while the neces-
sity for the other two operations will be increased. If an operation was signifi-
cant, its own necessity remains unchanged and the necessity for the other two 
increases. Finding the optimal significance threshold and other parameters for 
the heuristic is an optimization problem in itself. For details, see Appendix1. 

Pipeline 

The following contains the proposed pipeline which is a possible implementa-
tion of a “Solve Estimate Mark Refine Loop” analogous to [6] where the 
“Mark” part is spread out into sizing field processing and marking strategies in-
side the 𝑺𝒖𝒃𝒅𝒊𝒗 and 𝑪𝒐𝒂𝒓𝒔𝒆𝒏 functions. It applies adaptive refinement to a 
given input mesh 𝑀 with corresponding boundary conditions 𝐵 until a conver-
gence criterion 𝐶 is fulfilled.  
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𝑨𝒅𝒂𝒑𝒕𝒊𝒗𝒆𝑺𝑨(𝑀, 𝐵, 𝐶,𝑚𝑎𝑥𝐼𝑡𝑒𝑟): 
1 𝒍𝒐𝒐𝒑:	𝑖 = 0,𝑚𝑎𝑥𝐼𝑡𝑒𝑟 
2  𝒂𝒓𝒓𝒂𝒚	𝑢! = 𝑹𝑰𝑺𝑻𝑹𝑨(𝑀, 𝐵) 
3  𝒂𝒓𝒓𝒂𝒚	𝜌! = 𝒁𝒁𝑬𝒓𝒓𝒐𝒓𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒐𝒓(𝑀, 𝑢!) 
4  𝒂𝒓𝒓𝒂𝒚	𝑆! = 𝑪𝒐𝒏𝒗𝒆𝒓𝒕(𝑀, 𝜌!) 
5  𝑆! = 𝑺𝑭𝑷𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈(𝑀, 𝑆! , 𝐶) 
6  𝒊𝒇	𝑪𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒅(𝑀, 𝑢! , 𝜌! , 𝑆! , 𝐶) 
7   𝒆𝒙𝒊𝒕	𝒍𝒐𝒐𝒑 
8  𝒆𝒏𝒅	𝒊𝒇 
9  𝑨𝒅𝒂𝒑𝒕(𝑀, 𝑆! , 𝐶. 𝛼) 
10 𝒆𝒏𝒅	𝒍𝒐𝒐𝒑 

4. Results  

All tests were conducted on an i7-14700HX and an Nvidia RTX4060 Laptop 
GPU with a Samsung (MZVL21T0) NVMe drive. The code was compiled us-
ing MSVC (19.41.34120) and NVCC (CUDA 11.8.89). MMG (mmg3d_O3 
5.7.0, [5], [27]) is used with “-sol x.sol -i x.mesh -hgrad 1.5 -hausd 
0.01 × 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝐴𝐴𝐵𝐵)” and otherwise default settings. RISTRA uses a 
block Jacobi preconditioner. The material for models (see fig3) is steel with a 
Young’s modulus of 200 GPa and a Poisson’s ratio of 0.3. Gravity is turned 
off. 

 

              

Figure 3:  Left: The first model from the SimJEB dataset [28]. SPCs are set through 
cylinders and the load is 100𝑘𝑁. Right: Bar model: 0.2 × 0.2 × 1 meters. 

In the following, convergence of maximum displacement is used as termination 
criterion. A comparison of quality and speed between our mesh adaptation 
method and MMG is conducted, and simulation, error estimation, and sizing 
field processing are performed by our pipeline. To account for the time MMG 
needs to read and write files, we assume that our (non-optimized) functions for 
file processing take similar time which we can subtract from MMG’s runtime 
to approximate the speed of MMG if it was completely integrated in our pipe-
line. 

  



A simple example 
 
As an introduction, we show how a-posteriori mesh adaptation can be utilized 
for structural analysis in the simplest way possible. The bar model from fig3 is 
loaded with 4 × 100kN of force on one side, while fixed on the other. As seen 
in fig4, different mesh resolutions lead to different results, quadratic elements 
(p2) vastly outperform linear elements (p1), and a-posteriori mesh adaptation 
outperforms regular subdivision. 

 

Figure 4:  Left: Achieved maximum displacement for 𝛼 = 1.00 and MMG for linear 
(p1) elements. The quadratic (p2) elements were created through trivial conversion. 
Right: Illustration of the deformed bar for different numbers of p1 elements. 

For a brief runtime comparison with MMG we first need to establish which 𝛼 
results in meshes with similar quality. A four-step a-posteriori mesh adaptation 
with 350k tetrahedra targeted, provides meshes for which the quality (𝜂%&) is 
computed for every tetrahedron. For this simple example, the results were aver-
aged over four runs. The results in fig5 show that choosing a conservative 𝛼 =
1.66 leaves a margin of error and we are about 2.8 × faster than MMG. 

 

Figure 5:  Left: Histogram of tetrahedron quality for different 𝛼 and MMG. Right: 
Throughput for different 𝛼 and MMG. Only the number of resulting tetrahedra from 
the last step and the accumulated time for every step are considered. Our method runs 
into the iteration-limit of 250 operations for 𝛼 ≤ 0.33. 

Displacement for different mesh densities

120 Tetrahedra

544 Tetrahedra

540k Tetrahedra
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A more practical example 
 
Leaving the academic example aside, more practical scenarios are found in the 
SimJEB dataset by Whalen et al. [28]. Due to differences in preserving the 
original boundary, MMG can remove low-quality elements at the surface, 
while our method keeps the surface shape mostly unchanged (see fig6). 

 

Figure 6:  Top: Closeup on a specific area of SimJEB model 0. Top-Left: Original. 
Top-Center: Refined by MMG. Top-Right: Refined by our method. Bottom: Quality 
comparison after mesh adaptation for 𝛼 = 1.33. Both methods significantly reduce 
the number of low-quality elements and MMG removes all tetrahedra with 𝜂#$ >
4.7 × 𝜂#$,&'(.  

A three-step a-posteriori adaptive refinement is performed for the first 39 (see 
Appendix2) models to emulate the process of increasing the mesh resolution by 
a factor of √2 until maximum displacement converges. A limit of 2000k tetra-
hedra is set throughout sizing field processing. 

 

Figure 7:  Quality comparison for different quantiles of 𝜂#$. The quantiles are com-
puted for every model after refinement and averaged over all models for each 𝛼. 



Executing three iterations of adaptive refinement leads to a consistent compari-
son because it removes the effect of preexisting a-priori refinement which 
would lead to different convergence behavior for every model. To account for 
timing inconsistencies, all benchmarks were performed three times, and the 
fastest time for each model was used. The quality vs. speed tradeoff also trans-
lates to a bigger dataset, as seen in fig7. As most low-quality elements are lo-
cated at the surface, which is preserved, the 95-quantile of 𝜂%& is not affected. 

 

Figure 8:  Maximum displacement magnitude averaged over all models for each 𝛼 and 
MMG. Right: Average mesh adaptation time for each model. MMG* is corrected for 
the larger number of tetrahedra and MMG** is additionally corrected for IO-time. 

Although the difference is small, we can clearly see that smaller values of 𝛼 
not only increase the overall quality but also lead faster convergence. The 
runtime comparison is shown on the right side of fig8. MMG produced 39% 
more tetrahedra than our method, despite using sizing fields with identical ad-
justments for element count. This is rooted in MMG always refining along a 
continuous isosurface instead of the discrete mesh surface. In a raw comparison 
of required runtime, our method would be 8 to 19 times faster, when linearly 
adjusting the runtime of MMG for the number of tetrahedra and correcting for 
reading and writing files, this is reduced to 5 to 13 times. 

 

Figure 9:  Left: Key timings for different parts of the pipeline if MMG was fully inte-
grated. Right: Average runtime of the overall pipeline for different 𝛼 and MMG. 

Ours, α = 1.33 MMG
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By shifting the bottleneck from mesh adaptation to the simulation step, we re-
duced the time requirements of the proposed pipeline for structural analysis by 
a factor of 3 to 4 for 𝛼 ∈ [1.33,5]. 

5. Limitations 

Despite the advancements, there are several limitations to our current approach. 
The proposed pipeline runs unsupervised only for the specific use cases we 
have implemented, such as convergence of maximum displacement, stress 
(without strong singularities, besides SPCs), sizing field, or error estimation. 
While parts of the pipeline (such as RISTRA) can process higher-order ele-
ments, the mesh adaptation method is limited to using linear tetrahedra. This 
prevents its applicability to problems which require higher-order elements or 
other geometries. Lastly, the mesh adaptation method focuses on already dis-
cretized models and has no mesh generation or CAD surface approximation ca-
pabilities. 

6. Conclusion and Future work 

In this work, we have shown that mesh adaptation for structural analysis tasks 
can be accelerated by a factor of approximately 10 times compared to MMG 
through GPU-parallelization. Our method includes a parameter to adjust the 
speed-quality tradeoff, so high quality meshes can be generated through the 
same method without other changes. By shifting the bottleneck away from 
mesh adaptation in our proposed pipeline, the whole process can be accelerated 
by a factor of 3. While some remeshing operations that could further improve 
mesh quality, such as cavity remeshing and specific operations on the mesh 
surface, are not yet implemented, the current methods provide a solid founda-
tion for future work. The potential for warm starting simulations by transfer-
ring displacement fields using OLBVH may enhance the speed of concurrent 
simulations, shifting the bottleneck back to mesh adaptation, so further im-
provements on adaptation speed will still be valuable. It is often desirable to 
use higher-order meshes. Therefore, a promising direction could be to extend 
massively parallel tetrahedral mesh adaptation to support higher-order elements 
and operations along CAD-surfaces (or, e.g., p3 approximations of these sur-
faces, as seen in [29]). Our mesh adaptation tool could also be combined with 
interactive mesh editing [30] to ensure simulation accuracy after the customiza-
tion of models.  
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Appendix 

1. Algorithm for mesh adaptation 

The following shows a possible implementation of heuristic driven mesh adap-
tation of 𝑀 to the sizing-field 𝑆! with speed parameter 𝛼 ≥ 0 and the heuristic 
𝐻. To prevent division through zero, the default float epsilon of 1.2 × 1012 is 
added to 𝛼. Subdivision and coarsening thresholds are modified to 
12.01 + 𝛼 10⁄ . With these settings, 𝛼 = 0 is mostly a brute force approach 
that runs the algorithm until no further operation can be performed and any 
𝛼 > 0 will steer the speed vs. quality tradeoff in the direction of faster termina-
tion. 

𝐻$ = �
𝐻$,!
𝐻$,.
𝐻$,/

� = �
0 0 0

𝛽!+= 0.2 𝛽.−= 1 𝛽/+= 0.33
𝛽! + 0.05 𝛽.+= 0.25 𝛽/−= 1

� 

𝐻' = �
𝐻',!
𝐻',.
𝐻',/

� = �
𝛽!−= 1 𝛽. = 	1 𝛽/ = 	1
𝛽!+= 0.33 0 𝛽/+= 0.66
𝛽!+= 0.15 𝛽.+= 0.5 0

� 

The heuristic is different for significant (𝐻$) and insignificant (𝐻$) changes 
and resets 𝛽. and 𝛽/ after each harmonic optimization to 1. The significance is 
defined as the relative change to the number of tetrahedra through an operation, 
e.g. if an operation increased the number of tetrahedra by 5%, these 5% are the 
significance. 
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𝑨𝒅𝒂𝒑𝒕(𝑀, 𝑆! , 𝛼, 𝐻,𝑚𝑎𝑥𝐼𝑡𝑒𝑟): 
1 𝒗𝒂𝒓	𝛽! = 1, 𝛽. = 0, 𝛽/ = 0 
2 𝒍𝒐𝒐𝒑:	𝑖 = 0,𝑚𝑎𝑥𝐼𝑡𝑒𝑟 
3  𝒊𝒇	𝛽! > 0 
4   𝑯𝒂𝒓𝒎𝒐𝒏𝒊𝒄𝑶𝒑𝒕𝒊𝒎𝒊𝒛𝒂𝒕𝒊𝒐𝒏(𝑀, 𝑖𝑡𝑒𝑟: 1) 
5   𝑨𝒑𝒑𝒍𝒚	𝐻',!	𝑡𝑜	𝛽! , 𝛽., 𝑎𝑛𝑑	𝛽/ 
6  𝒆𝒏𝒅	𝒊𝒇 
7  𝒊𝒇	𝛽. > 0 
8   𝒗𝒂𝒓	𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 = 𝑺𝒖𝒃𝒅𝒊𝒗(𝑀, 𝑆!) 
9   𝒊𝒇	√𝛼 − 100 × 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 √𝛼⁄ > 0 
10    𝑨𝒑𝒑𝒍𝒚	𝐻$,.	𝑡𝑜	𝛽! , 𝛽., 𝑎𝑛𝑑	𝛽/ 
11   𝒆𝒍𝒔𝒆 
12    𝑨𝒑𝒑𝒍𝒚	𝐻',.	𝑡𝑜	𝛽! , 𝛽., 𝑎𝑛𝑑	𝛽/ 
13   𝒆𝒏𝒅	𝒊𝒇 
14  𝒆𝒏𝒅	𝒊𝒇 
15  𝒊𝒇	𝛽/ > 0 
16   𝒗𝒂𝒓	𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 = 𝑪𝒐𝒂𝒓𝒔𝒆𝒏(𝑀, 𝑆!) 
17   𝒊𝒇	√𝛼 − 100 × 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 √𝛼⁄ > 0 
18    𝑨𝒑𝒑𝒍𝒚	𝐻$,/ 	𝑡𝑜	𝛽! , 𝛽., 𝑎𝑛𝑑	𝛽/ 
19   𝒆𝒍𝒔𝒆 
20    𝑨𝒑𝒑𝒍𝒚	𝐻',/ 	𝑡𝑜	𝛽! , 𝛽., 𝑎𝑛𝑑	𝛽/ 
21   𝒆𝒏𝒅	𝒊𝒇 
22  𝒆𝒏𝒅	𝒊𝒇 
23  𝒊𝒇	𝛽/ ≤ 0	𝐴𝑛𝑑	𝛽. ≤ 0 
24   𝒆𝒙𝒊𝒕	𝒍𝒐𝒐𝒑 
25  𝒆𝒏𝒅	𝒊𝒇 
26 𝒆𝒏𝒅	𝒍𝒐𝒐𝒑 

2. SimJEB model numbers 

0, 4, 6, 8, 9, 10, 12, 14, 15, 16, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 33, 34, 35, 
38, 39, 40, 50, 51, 53, 55, 56, 58, 59, 61, 62, 64, 65, 66, 69. 


