
Reducing Time to Market of Differential Systems Using 
Cloud GPU-Accelerated CFD 

 
Felix Pause, Malwine Fischer, Filippo Boscolo Fiore 

(Dive CAE, Germany); 

Ian Pegler 
(NVIDIA, USA); 

Daniel Derrix 
(BMW Group, Germany) 

Abstract 

In today’s competitive automotive landscape, accelerating time to market and 
optimizing cost efficiency are critical. BMW Group and Dive CAE have 
examined how advancements in computational fluid dynamics (CFD) can 
address these challenges, focusing on GPU acceleration, cloud parallelization 
and Smoothed Particle Hydrodynamics (SPH). 

The study examined drivetrain design projects, particularly the development of 
new differential systems. Modern differential systems are becoming 
increasingly complex, posing significant challenges for design engineers. 
Additionally, evolving safety, environmental, and performance standards 
demand iterative redesigns and extensive testing, lengthening development 
cycles. Several operating points and designs were compared and assessed with 
respect to oil churning losses and comprehensive oil coverage of system 
components. 

The SPH method is particularly effective for modelling problems of this type, 
involving free-surface or multi-phase flows. Moreover, unlike grid-based 
methods, its Lagrangian, particle-based framework naturally handles complex 
geometries and moving components without requiring re-meshing. 
Additionally, it reduces manual pre-processing work, paving the way for 
automation of large parallel simulation studies.  

Dive CAE employs a Weakly Compressible SPH approach (WCSPH), 
incorporating a variety of measures relevant to industry-level accuracy and 
usability. Key methods include a semi-analytical integral boundary condition to 
improve near-wall flow accuracy. This paper outlines the theoretical 
foundations of the method and provides selected validation results. 

GPU acceleration of the SPH code demonstrates a runtime reduction by a 
factor of 6-32 compared to CPU architectures. Cloud parallelization enabled 



concurrent testing of 12 operating conditions, shortening project turnaround 
time (TAT) by a factor of 5 compared to an on-premise setup. Eventually, the 
paper also includes an analysis of the cost effect of migrating the simulations to 
GPUs and the cloud. 

In conclusion, the study examines how GPU acceleration, cloud technologies 
and SPH contribute to overarching goals of accelerating time to market and 
reducing costs.  

1. Introduction 

The automotive industry faces pressure to reduce cost and shorten development 
cycles while meeting increasingly stringent performance, safety, and 
environmental standards. Accelerating time to market is critical, particularly 
for complex components such as differential systems. These systems, integral 
to modern drivetrains, involve intricate geometries and multiphase lubrication 
processes that challenge traditional simulation methods. 

Conventional grid-based CFD techniques—such as finite volume and finite 
element methods—have long been the workhorses of fluid simulation. 
However, the requirement for detailed mesh generation and frequent re-
meshing in the presence of free surfaces limits their efficiency. In contrast, 
Smoothed Particle Hydrodynamics (SPH) offers a mesh-free, Lagrangian 
approach that naturally handles moving boundaries and free-surface. Since its 
introduction in 1977 by Gingold and Monaghan [1], SPH has evolved into a 
robust tool for simulating complex fluid phenomena, with applications ranging 
from astrophysics to industrial processes [2]. In automotive engineering, SPH 
has been effectively applied to gearbox lubrication analysis, enabling detailed 
predictions of oil distribution, churning losses, and bearing performance [3] 
[4]. 

The advantages of SPH are further amplified by recent advances in hardware 
acceleration. Modern GPUs offer massively parallel processing capabilities 
that can drastically reduce simulation runtimes compared to traditional CPU 
architectures. When combined with cloud computing, these accelerators 
facilitate the concurrent execution of multiple simulation scenarios, 
significantly shortening project turnaround times and reducing costs. This 
integrated approach enables rapid design space exploration without the 
extensive pre-processing overhead typically associated with grid-based 
methods. 

This paper presents a study on the integration of SPH with GPU acceleration 
and cloud parallelization to optimize CFD simulations for differential system 
design. We detail the theoretical foundations of SPH, validate our approach 
against experimental benchmarks, and demonstrate substantial runtime and 
cost savings relative to conventional CPU-based workflows. Our work extends 
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previous research in the field, contributing to the evolving body of knowledge 
aimed at democratizing high-fidelity simulations for automotive applications.  

2. Theoretical Foundations of the SPH Method 

In Computational Fluid Dynamics (CFD), fluid flows are described using basic 
conservation principles in the form of balance equations, the so-called Navier-
Stokes equations (NSE). The NSE form a system of nonlinear partial 
differential equations, that assure the conservation of mass, momentum and 
energy.  

Two paradigms are followed when representing the properties of a fluid: the 
Eulerian representation and the Lagrangian representation. The Eulerian 
formulations are the foundation of classical mesh-based methods, such as the 
Finite Volume Methods (FVM), Finite Differences Method (FDM) and Finite 
Elements Methods (FEM), where a continuum is discretised by a network of 
spatially fixed communicating cells. In the Lagrangian formulation, the flow is 
represented by moving control domains, abstracted by particles.  

 

Figure 1:  Comparison of Eulerian and Lagrangian Discretization 

The SPH solver used here is based on the modelling approaches presented by 
Sabrowski et al. [5]. It employs a weakly compressible SPH model (WCSPH). 
To reduce computation time, an artificial speed of sound c0 is introduced, 
chosen so that small density variations of less than 1% are possible [6] [7]. 
This approach is valid since compressible effects can be neglected for Mach 
numbers Ma < 0.1. In WCSPH, the incompressible momentum equation is 
used alongside the compressible continuity equation. The equation of state 
couples the mass density ρ to the pressure p, thus closing the system of partial 
differential equations [8]. 
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with the position of the particles 𝒙, velocity 𝒗, time 𝑡, density ρ, pressure 𝑝, 
kinematic viscosity 𝜈, gravity 𝒈, initial density ρ0, background pressure p0 and 
the numerical speed of sound c0. The exponent γ was experimentally 
determined to be 7 for liquid phases [8]. At the position of each particle, a 
weighted interpolation is applied using a kernel function. With the kernel 
function, the properties of any particle are calculated based on the distance to 
neighboring particles and their respective properties. This yields the forces that 
are used in the Lagrangian NSE to determine the particle’s trajectory in space. 

 

Figure 2:  Left: Kernel Function, Right: Visualization of a set of particles as a 
representation of a continuum. 

Modelling boundary conditions is one of the challenges in the SPH framework. 
1If the kernel intersects with a boundary, zeroth order consistency is no longer 
given. In current literature several approaches are described to determine the 
missing influence of the truncated kernel area. One well-established framework 
is to discretize the bordering geometries using buffer particles, similar to the 
fluid field. This prevents the kernel from being truncated [9]. This approach is 
straightforward but requires filling the geometry with boundary particles, 
thereby linking the size of the boundary particles to the resolution of the fluid 
particles, increasing computational effort [5]. An alternative is to represent the 
boundary, using a segment-based mesh. Here, a renormalization factor γR is 
introduced  [10] and the volume integral is transformed into a boundary 
integral [11]. 

Other relevant modelling aspects of industry-grade SPH codes include the 
modelling of: 

• open boundaries [12],  
• surface tension effects [13] [14],  
• varying particle resolution [15],  

 

1 „Grand Challenges“ of SPH are defined by the SPHERIC steering committee, the 
international organization representing the SPH research community [34]. 
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• efficient and consistent time-stepping [16] [17],  
• numerical stabilization techniques,  
• density diffusion [18], and  
• particle shifting [19] [20].  

3. Validation of the method 

The accuracy of the underlying models as well as their concrete 
implementation within the Dive SPH solver have been extensively verified and 
validated against established benchmarks and experimental data. Several 
studies have demonstrated its effectiveness in capturing complex flow 
dynamics across various scenarios [21] [22] [23] [24] [3] [25] [26] [4]. Two 
examples will be introduced briefly. 

The lubrication of transmission components, such as gearboxes, is a key 
application for SPH simulations, given the high-speed gear motion and the 
complex multiphase flow of air and lubricant. To validate the model, the no-
load test rig at the Forschungsstelle für Zahnräder und Getriebe (FZG) at TU 
Munich has been used [4]. Specifically, the power lost because of the viscous 
and pressure forces exerted by the oil onto the gears is calculated from the 
simulation.  The so called “churning losses”, determined with the SPH code of 
the authors show excellent agreement with the experimental values found in 
[27]. 

 

Figure 3:  Results published by [MENSAH2022]. Left: Snapshot of the flow field in the 
FZG gearbox. Right: Comparison of SPH results with experimental values and classical 

CFD. 

Another relevant validation is the active oil cooling system of an electric 
motor. The heat transfer rates of the experimental study described in [28] were 
closely matched for several operating points [29].  



 

Results published by [29]. Left: Snapshot of the flow field in the electric 
motor. Right: Comparison of SPH results with experimental values. 

4. Objective in Differential System Design 

The focus of this work is an investigation of lubrication in a differential 
system. This use case presents multiple challenges for the CFD method used. 

1. Multiphase Flow Behavior: Accurately capturing oil-air interactions 
requires a method capable of dynamically tracking free surfaces. 

2. Complex Moving Geometries: The drivetrain consists of intricately 
shaped gears, bearings, and housings, making grid-based CFD methods 
time-consuming and difficult to use efficiently. 

These factors make SPH a suitable approach for this problem. 

The differential gearbox analysed in this study is shown below, with oil 
channels integrated into the housing to direct lubricant to the bearings 
efficiently. 

 

Figure 4:  Left: Components of the gear train. Right: Position of feed of input bearings 

The primary objective is to ensure sufficient bearing lubrication under all 
operating conditions, critical for preventing premature failure and costly 
replacement of gearboxes in the field. A secondary goal is to minimize oil 
churning losses to improve the efficiency of the transmission. 
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Design Goal Measured By Relevance 

(Primary) Bearing 
Lubrication & 
Lifetime 

Volume flow rate 
through bearing feed 
channel, oil amount in 
bearings, wetting levels 

Proper lubrication reduces 
wear and heat buildup, 
extending component 
lifespan 

(Secondary) Oil 
Churning & 
Efficiency 

Gear churning losses Excessive churning leads 
to energy losses, 
impacting fuel efficiency 

Table 1:  Design Goals 

This study evaluates design variations by modifying the hypoid gear spiral 
angle while maintaining a constant number of teeth. The goal is to determine 
how these variations influence oil transport within the system and whether they 
can be leveraged to direct oil flow to critical lubrication points. In case both 
versions turn out to be equivalent, they can be interchanged without further 
impact on the system. The versions considered (A, B) are depicted below. 

 

Figure 5:  Comparison of gear design variants A and B. 

The simulations are conducted across a range of operating conditions, varying 
rotational velocity and oil temperature: 

Input Speed (RPM)  2000, 4000, 6000 

Oil Temperature (°C) 45, 100 

Table 2:  Operating Conditions 



Other real-world conditions, such as vehicle acceleration, recuperation, 
braking, cornering and hill climbing (to ensure the breather remains dry), are 
beyond the scope of this study but are commonly considered in similar 
analyses. 

5. Setup and Boundary Conditions 

In accordance with Table 2, a total of 12 operating points is set up. The input 
velocity and the rotational velocity resulting from the gear ratio are applied to 
the pinion and the wheel, respectively. Both sets of bearings rotate at half of 
the rotational velocities of their respective gear. In the first 0.1s, all rotating 
parts are linearly accelerated until they reach their corresponding rotational 
velocities. In accordance with the integral boundary condition introduced in the 
previous chapter, solid parts are represented in a triangulated way, using CAD 
generated .stl file. An example is depicted below. 

 

Figure 6:  Pinion Mesh 

The oil sump is initially discretized with a particle diameter of 0.001 m, 
resulting in approximately 2.25 million particles. To better represent the effects 
in the gears and channels while saving computational cost, a total of six 
refinement zones is added. This includes five cylindrical zones around the 
wheel and pinion as well as their bearings and one cuboid zone around the 
channels and the pinion shaft. Note that, even though it is possible to conduct 
heat transfer simulations with SPH, the cooling effect of the oil is not of 
interest for this analysis and the different temperatures of the oil only affect the 
density and the viscosity of the lubricant. For 45°C, a density of 832.9 kg/m3 
and a kinematic viscosity of 0.0000344 m2/s is utilized and for 100°C the oil 
has a density of 800.8 kg/m3 and a kinematic viscosity of 0.000009 m2/s. 
Surface tension is considered with a surface tension coefficient of 0.03 N/m 
and a contact angle of 30°.  
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Figure 7:  Simulation setup displaying the discretized oil, the refinement zones  
and the position of the bearing feed volume flow sensor. 

6. Simulation Results 

Visualizations of the flow dynamics predicted by the SPH solver are depicted 
below. The oil surface is rendered to highlight its trajectories. As the speed 
increases, the oil distributes more extensively within the housing and 
agglomerates in larger quantities around the bearings. 

2000 RPM 

 



4000 RPM 

 

6000 RPM 

 

Table 3:  Comparison of the oil distribution with increasing speed for 45°C in 
gear set A at 0.6 s. With increasing rotational speeds, more oil can be found in 

the channels feeding the bearing and in the region around the pinion shaft.   

 

Volume Flow 

The volume flow through the feed channels in the housing (as shown in Figure 
4) serves as an indicator for the wetting of the input bearings. It is measured at 
a sensor placed at the end of the tubes. The differential is simulated for a 
duration of 0.6 s for 6000 rpm, 0.7 s for 4000 rpm and 1.1 s for 2000 rpm as 
lower rotational velocities cause oil to reach the sensors later.  
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Figure 8:  Volume flow of different rotational speeds at 100°C for gear set A (left) and 
B (right) 

 

Figure 9:  Volume flow of different rotational speeds at 45°C for gear set A (left) and B 
(right) 

In both gear sets, the volume flow through the channels increases with the 
rotational speed of the gears (Table 3). Moreover, a higher temperature leads to 
an increased volume flow through the channels resulting from the lower 
viscosity and density of the oil. After the ramp-up phase, the oil takes longer to 
reach the surface sensor in the differential with gear set B compared to gear set 
A (Figure 8). Furthermore, the volume flow in gear set B exhibits fewer 
fluctuations over time. For the rotational speeds of 6000 rpm and 4000 rpm, 
only minor differences in the achieved average volume flow rate can be 
observed (Figure 8). More significant differences appear at the lowest 
rotational speed, especially for a temperature of 45°C, where the volume flow 
rate in set B stays far below the rate in set A (Figure 9). A close-up comparison 
(Figure 10) gives deeper insights into this effect. In gear set A, the oil feeding 
channel is filled, whereas in gear set B, it is only partially filled. Caused by the 
different spiral angles, the oil is deflected with different trajectories, leading to 
a significant change in the oil volume flow in the area of interest. 



 

Figure 10:  Oil flow at 45°C 2000 rpm for gear set A (left) and gear set B (right) at 1.1 s. 
In gear set B, oil descends earlier along the wheel before reaching the feeding channel. 

Churning Losses  

Churning losses occur when a rotating component interacts with a surrounding 
fluid, causing energy dissipation due to fluid resistance. The value of the power 
losses is measured at the boundaries of the rotating parts as the integral of the 
shear and normal stresses acting on the surface of the solid parts. The total loss 
is obtained by aggregating the losses of all parts. Due to fluctuations, the 
average values during the last 0.1 s of the simulation are compared. 

 

Figure 11:  Comparison of the power losses of different oil temperatures at different 
rotational speeds for gear set A (left) and gear set B (right) 

 

Figure 12:  Comparison of the power losses of the gear sets at different rotational speeds 
at 45°C (left) and at 100°C (right) 
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As expected, the power losses show a strong dependency on the rotational 
speed and on the temperature for both gear sets. While the power losses 
increase superlinearly with increasing rotational speed, higher oil temperatures 
consistently decrease power losses due to the lower viscosity of the fluid and 
the reduced friction (Figure 11).  

The analysis is more nuanced when comparing gear sets A and B (Figure 12). 
The difference in power losses ranges from approximately 1% to 10%. For 
lower temperatures, gear set B shows better efficiency at high rotational 
speeds, while the performance of gear set A is superior at medium and lower 
rotational speeds. For higher temperatures, a similar observation can be made 
for high and medium rotational speeds, where gear set B and gear set A show 
lower losses, respectively. For a lower rotational speed of 2000 rpm, gear set B 
performs better than gear set A.  

To choose the optimal design, prioritization of the different operating 
conditions can now be performed, e.g. based on the expected driving profile.  

7. Investigating the Impact of GPU and Cloud acceleration on Time to 
Market and CAE cost profile 

The study presented in the previous chapter is now used as a baseline to 
analyse the potential of GPU acceleration and cloud workload parallelization. 
When evaluating the impact of R&D, particularly CAE, on time to market and 
project lead times, multiple factors must be considered. The entire lifecycle—
from customer request to final design—plays a role, but this study focuses on 
the CAE-specific problem-solving level. Key time contributors include 
preprocessing, solving, postprocessing, and parallelization potential. As shown 
in the previous chapter, a typical project setup involves investigating 
approximately 12 operating points. This number is confirmed by an analysis of 
average load profiles of drivetrain design teams later in this chapter. 

 

 

Figure 13:  Simplified visualization of a typical problem-solution loop in CAE. 

Effect of GPU Acceleration on Single Workflow Velocity 



Using the problem described in the previous chapter, modern GPU 
architectures were evaluated for potential speedups. GPUs can outperform 
CPUs in CFD workloads due to their massively parallel architecture, which 
efficiently handles SPH’s computational demands [30] [31]. This parallelism 
accelerates particle interaction processing and significantly reduces simulation 
time. For reasons of simplicity, the potential of multi-node parallelization is 
excluded from this analysis. The configurations used in the benchmark are 
listed in the table below. Except for one system, all tests were conducted on the 
Microsoft Azure cloud.  

Name Hardware GPU Azure Name Used 
Cores 

16 
cores 

Intel Xeon 
Platinum 8168 
with 32 cores, 
64GB RAM 

- Standard_F32s_
v2 

16 

120 
cores 

2x AMD EPYC 
7V73X with 64 
cores, 448GB 
RAM 

- Standard_HB12
0rs_v3 

120 

A100 AMD EPYC 
7V13 with 64 
cores, 220GB 
RAM 

NVIDIA A100 
PCIe, 80 GB 
VRAM 

Standard_NC24
ads_A100_v4 

1 

H100 AMD EPYC 
9V84 with 96 
cores, 320GB 
RAM 

NVIDIA H100 
NVL, 94GB 
VRAM 

Standard_NC40
ads_H100_v5 

1 

B200 INTEL XEON 
PLATINUM 
8570 with 56 
cores 

NVIDIA B200 
SMX, 184GB 
VRAM 

NA 1 

The hardware selection was based on the following reasoning. The 
performance of “16 cores” Intel Xeon Platinum 8168 CPUs (32 physical cores) 
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is comparable to processor that have been traditionally used in HPC data 
centers. Therefore, it serves as a reference in this study. “120 cores” AMD 
EPYC 7V13 (128 physical cores) has demonstrated in previous tests of the 
authors to show a strong balance between cost and performance for their SPH 
code. Due to virtualization, not all physical cores are used for computations.  

 “A100” and “H100” GPUs are selected because of their high performance and 
availability at the time of writing. The “B200” is included to represent the 
capabilities of the newest GPU generation on the market. 

Performance was tested for two configurations: a coarse resolution (4 million 
particles) and a high-resolution case (60 million particles). The high-resolution 
case was not run on the 16-core hardware, due to exceedingly high runtimes. 
The graph below shows the speedups. 

 

Figure 14:  Speedups achieved using GPUs  

Results confirm the impact of GPU acceleration, showing 6x and 11x speedups 
when transitioning from a 120-core AMD CPU to the A100 GPU, effectively 
reducing simulation runtime from days to hours. On the newest B200 GPU, a 
speedup of 32 is observed.  

Additionally, newer GPUs enable high-fidelity simulations with tens of 
millions of particles on a single node, allowing for higher levels of detail in 
large-scale studies. 

Cost Effect of GPU Hardware  

To estimate the cost impact of GPU migration, we compared the cost per 
simulation using Microsoft Azure Cloud list prices at the time of writing [32]. 
Prices from other vendors were omitted, as they are comparable, and our focus 
is on relative differences. Comparing on-premise hardware costs is challenging 



due to significant vendor price variability. The following hourly prices are 
used: 

• 16 Cores: 1,35 €/h 
• 120 Cores: 3.60 €/h 
• A100: 3,67 €/h 
• H100: 6,98 €/h 
• B200: N/A 

The 120-core CPU serves as the baseline. Using the speedup values from the 
previous chapter and the per-hour pricing for the various hardware 
configurations, cost changes are computed for both the coarse and high-
resolution cases; a value below 1 indicates cost savings. 

 

Figure 15:  Cost effect of GPU migration on a single simulation 

The increased performance of the GPUs translates to comparable cost savings 
due to similar per-hour pricing. In this example, migrating the fine simulation 
to the H100 yields cost savings of ~9x. This is primarily due to energy 
consumption being the main cost driver in cloud computing; hence, despite 
higher initial procurement costs, GPUs exhibit operational cost similar to 
CPUs. 

Effect of Cloud Workflow Parallelization  

Beyond accelerating individual simulations, the parallel execution of multiple 
workflows is crucial for reducing overall time-to-results. This study employs a 
workflow similar to the approach shown in [33]. STL files that represent the 
wall boundaries are created from a CAD tool. Via a Python SDK, 
preprocessing, simulation execution, and postprocessing are orchestrated and 
run in parallel in the cloud. It can be assumed that the maximum workflow 
batch size discussed here (10-20), can always be provisioned by the cloud 
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vendor. Therefore, there are no restrictions on peak load scaling in the cloud 
environment.  

Estimating the potential speedup over an on-premise system is complex due to 
infrastructure variability and different usage patterns across organizations. On-
premise systems inherently face capacity constraints. HPC resources are shared 
and create bottlenecks in the daily operation. Additionally, in traditional CAE 
environments, user groups also compete for availability of shared software 
licenses. For many organizations, this even becomes the main factor limiting 
CAE usage. 

 

Figure 16:  Traditional CAE Environment with Shared Resources (HPC, Licenses). 

Any user group in this setup has the responsibility to deliver results fast in 
critical project situations and is aware of the system capacity and presence of 
all other stakeholders. In consequence, they influence each other’s work and 
certain access patterns emerge. Incentives are created to queue strategically and 
assure a high utilization to secure investment in large HPC infrastructures and 
license stacks. Additionally, the entailing high utilization of the system 
discourages user groups that do not access the resources yet.  

To estimate demand in an unconstrained environment—free from queue 
management, resource rationing, and license bottlenecks—we analysed 
workload patterns from transmission design teams operating entirely in the 
cloud. Data was collected from four independent industrial and automotive 



transmission teams over one year.

 

Figure 17:  Concurrent simulation jobs across four transmission design teams. 

The results indicate strong workload fluctuations, with peak usage reaching 
15–20 concurrent jobs, aligning with our previous case study. Baseload 
utilization is relatively low, with extended idle periods. This reflects the 
project-driven nature of engineering teams, where computational demand 
varies based on evolving customer requirements. A breakdown of time spent in 
different load states provides insight into adequate infrastructure provisioning. 

 

Figure 18:  Time spent in different load cases. Approx. 80% of the time, 3 nodes or less 
are used. 

Approximately 30% of the time is idle, while ~80% of the time fewer than 
three jobs run concurrently. This variability presents challenges for on-premise 
system provisioning. Optimizing for cost suggests covering baseline demand 
(2–3 nodes), but peak loads would then require sequential execution, extending 
project timelines by a factor of 3–4. Under-provisioned clusters and license 
stacks (<4 nodes / licenses) further discourage users from fully utilizing 
available resources.  

To quantify this effect, we modeled three setups: 

• Minimum Baseload Coverage (2 nodes) 
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• Medium Utilization (3 nodes) 

• Peak Load Coverage (15 nodes) 

Two assumptions are made to compare these setups with the cloud. 

(a) The workload stays constant when transitioning to a fixed capacity 
system 

(b) Software licenses are always available at the necessary volume.  

Especially (a) is a strong assumption considering the reasoning earlier in the 
chapter. It would require that jobs can always be queued and that user groups 
do not change their behavior because of the known limitations of the system. 
The table below estimates utilization and slowdown effects. If these 
assumptions are met: 

System Size Available Nodes Overall 
Utilization 

Peak Load 
Slowdown 

Minimum 2 100% 7,5 

Baseload 3 66% 5 

Peak Load 15 13% 1 

 
Given a typical on-premise setup designed for "Baseload" coverage, solving 
CAE problems would experience an estimated 5x slowdown in peak load 
scenarios.  
 
Overall Cost Comparison 

After establishing comparable on-premise environments based on real-world 
usage data, we now compare cloud and on-premise costs. This analysis is 
complex due to diverse cost factors associated with CAE workloads, including: 

Infrastructure 
Costs 

1. Compute Infrastructure (CPU / GPU)  
2. Storage & Networking  
3. Client Devices 
4. Power 
5. Cooling  
6. Maintenance 



7. IT Administration 

Software 
Costs 

8. Solver Licenses 
9. Preprocessing & Postprocessing Licenses 
10. IT Administration 
11. User Training 

Table 4:  Costs associated with running CAE workloads. 

For simplicity, we focus on (1) compute infrastructure and their electricity 
consumption. Other factors, such as license costs and procurement discounts, 
vary widely between organizations. The numbers used in this chapter are 
intended to give an indication and allow constitute a comprehensive economic 
analysis. Instead, they provide a first assessment of the economic boundary 
conditions, offering a rough estimation rather than a definitive cost evaluation. 

We assume usage of NVIDIA A100 GPUs for their balance of performance, 
per simulation cost, and availability at the time of writing. Hardware refresh 
cycles are set at four years, and we compare the "Minimum" and "Baseload" 
on-premise setups from the previous chapter with cloud-based execution. A 
single A100 GPU is assumed to cost 18.000 €2. Using the Microsoft Azure 
Cloud list prices, cloud computing is assumed to cost 0,64 €/h [32]. For 
electricity cost, we assume power consumption of 400W, and electricity cost of 
0,25 €/kWh.  

System Setup On-Premise / 
Minimum  
(2 Nodes) 

On-Premise / 
Baseload 
(3 Nodes) 

Cloud /  
Spot Instance 

Investment (€) 36.000 54.000 - 

Refresh Cycle (yrs) 4 4 - 

Utilization (%) 100% 67% - 

 

2 No official launch price is given for the A100. The number is an approximation based on 
different vendors’ prices known to the authors. 
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Used Hours (p. yr) 17.520 17.520 17.520 

Hardware Cost 
(€ p. yr) 

9.000 13.500 / 

Electricity Cost  
(€ p. yr) 

1.752 1.752 / 

Total Cost 
(€ p. yr) 

10.752 15.252 11.212 

Table 5:  Comparison of cost associated with simulations in on-premise and cloud 
environments. 

In this case, executing the workloads entirely on the cloud is at a cost level 
similar to the minimum on-premise setup. The key factor is the ability to 
leverage low-cost “spot” instances. The spot model is a special renting option 
cloud vendors typically offer to smoothen their data center utilization. These 
instances are provisioned on-demand but may be evicted during periods of high 
load. This eviction risk makes spot instances unsuitable for some classical 
workloads. Also, availability might be limited for hardware in high demand, as 
seen for the H100 in our case. However, they are attractive for CAE 
applications, where simulations can resume from checkpoints, due to their 
favorable pricing. 

Other than neglecting important cost factors, such operations, maintenance and 
administration (see table 3), this analysis simplifies certain aspects. Key 
considerations that should be made additionally include: 

1)  Procurement Differences – On-premise infrastructure requires upfront 
investment, while cloud resources are rented on-demand, impacting 
financial models and accounting. 

2)  Time-to-Market Impact – Hardware procurement, internal decision-
making, installation, and financing processes introduce significant 
delays, whereas cloud resources are immediately available. 

3)  Hardware Refresh Cycles – On-premise systems cannot benefit from 
mid-cycle hardware advancements. In contrast, cloud users can 
seamlessly upgrade to new hardware (e.g., moving from A100 to H100 
offers a 1.7x speedup). 

4)  Vendor Asset Management – Cloud providers manage infrastructure, 
reducing IT administration overhead and taking over certain liabilities, 
and data security responsibilities.   



8. Summary and Outlook 

This study demonstrates that integrating modern CAE technologies, such as 
GPU acceleration, cloud parallelization and SPH can significantly enhance the 
efficiency of CFD simulations for differential system design.  

The SPH method is an established and validated tool in drivetrain design 
because of its capability to effectively model multiphase flows with complex 
moving geometries. It enables rapid evaluation of the impact of different gear 
and housing designs on efficiency and system durability across a wide range of 
operating conditions without extensive manual preprocessing.  

Our simulation results indicate that GPU acceleration can achieve speedups 
between 6x and 32x compared to CPU architectures. Furthermore, cloud-based 
parallel execution reduces project turnaround time in peak load scenarios by 
around 5x compared to a realistic on-premise alternative. Combined, these 
improvements yield a total speedup of 30x or greater. Furthermore, cost 
comparisons reveal that cloud solutions can be as economical as even the 
smallest on-premise setups with prices for hardware and electricity being in a 
similar range.  

The implications for the users and decision-makers in the industry are 
significant. Advanced simulation tools support meeting evolving regulatory 
and market demands. Shortened lead times enable more iterative testing and 
faster decision-making, fostering a more agile R&D process. Moreover, the 
increased accessibility of high-performance computational resources 
contributes to a democratization of simulation capabilities, encouraging 
broader adoption across design teams. 

Looking ahead, further advancements in SPH algorithms—targeting enhanced 
accuracy and efficiency—are anticipated. Next-generation GPU hardware, with 
improvements in power efficiency and computational, will drive further 
performance gains.  

In summary, the integration of SPH with GPU and cloud technologies offers 
clear benefits in simulation speed, cost, and scalability. These advancements 
not only accelerate the design cycle for differential systems but also facilitate 
more complex, high-fidelity simulations across the automotive sector and 
beyond. 
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