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Abstract 

Designing sheet metal parts is a challenging and specialized task that demands 
a deep understanding of engineering principles and extensive industrial 
experience. This process relies heavily on heuristic knowledge and practical 
expertise acquired over many years. While this approach has been practical, it 
is inherently time-consuming requiring expert involvement and prone to human 
error, limiting the efficiency and accuracy of the design process. 

With the development of artificial intelligence (AI), a significant 
transformation is underway in the design and optimization of sheet metals, with 
notable examples such as W. L. Chan et al. [2], A. Derogar et al. [3] and F. 
Han et al. [10], among many others. AI methods are now being integrated into 
the design process to streamline operations and to efficiently reduce the time 
required for the design forming process. These methods aim to simplify the 
inherently complex design tasks, reduce reliance on manual expertise, and 
significantly shorten the time required to develop and refine designs. This shift 
enhances the overall efficiency of the design process, but this needs to be 
further investigated.  

Simulations are a commonly used approach in the design of sheet metals but 
further extends the design workflow and limits efficiency. To address these 
challenges, we specifically explored Multi-Layer Perceptrons (MLPs) among 
suitable AI methods. MLPs are especially in addressing engineering design 
challenges and minimizing errors in experimental data. They are well-suited 
for optimizing design parameters and making predictions based on datasets, 
which would be too time-consuming with traditional simulation methods, as 
noted in S. Kashid et al. [1] and W. L. Chan et al. [2]. An MLP-based approach 
can significantly reduce the time spent on simulations by learning from 
existing data and providing faster and more accurate predictions.  



This paper aims to develop a methodology that integrates a MLP into the 
design of sheet metal forming to accelerate the processes. Our approach 
approximates the feasibility and formability parameters and evaluate the 
performance of these parameters predicted based on material properties, 
geometry of the sheet metal part, lubrication and process parameters enabling 
the identification of optimal designs at a faster rate. In this paper, sheet metal 
forming simulations using OpenForm are employed to generate the training 
data for our MLP model. The trained MLP is then used to predict the optimal 
configurations of different metal parts. Our methodology does not only 
accelerate the design process but also provides reliable means of exploring 
design alternatives and assessing their robustness. 

To ensure the reliability of the developed MLP, its performance is compared 
with other AI models. The results show that our proposed method predicts 
design configurations with least error compared to other AI models. 
Furthermore, it performs well not only on the targeted metal part designs used 
for model training but also on other types of designs, saving time in the 
forming process and reducing the time taken to explore the design space from 5 
hours to less than 1 second. What distinguishes our approach is that it aims to 
be generalized allowing for broad applications across various metal part 
designs. This integrated approach offers a robust and efficient solution for 
optimizing sheet metal part design, setting a benchmark for future 
advancements in the field.  

 

1. Introduction  

The design of sheet metal parts is an important task in engineering because it 
directly impacts the quality of final products, playing an important structural 
role in numerous industrial applications. The sheet metal forming refers to the 
stretching of a flat sheet metal blank between a punch and a die, and the 
process includes drawing, bending and to some extent, blanking and stretch 
forming. Experimental and FE-based simulation works yield favourable 
outcomes in analysing the process using a simulation software like OpenForm, 
LS-Dyna or AutoForm. However, the sheet metal forming process is still 
complex, expensive and highly dependent on heuristic knowledge and practical 
expertise acquired over many years, as noted in W. L. Chan et al. [2]. Although 
various computer-aided systems, including Computer-Aided Design (CAD) 
and Computer-Aided Engineering (CAE), have been utilized to simplify the 
complex processes and save time, domain experts are still essential for making 
decisions at various stages of design process. Despite the high costs the 
required expert experience, this process is still widely adopted in industry to 
design sheet metal parts due to its repeatability and productivity.  
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Thanks to the development of AI solutions, many data-driven approaches have 
been proposed to solve complicated problems in almost all areas of 
engineering. Instead of the conventional process using experimental and 
simulation techniques, many researchers have used data-driven solutions for 
various applications, including manufacturability analysis, process planning 
and finite element simulation in the sheet metal forming process. The 
development of sheet metal parts typically involves multiple design 
parameters. Even a minor change in any targeted design parameter results in a 
new design configuration, requiring additional simulations to evaluate the 
structural behaviour of sheet metals. Identifying the optimal result is very time-
consuming, as it requires running various simulations, each with a different set 
of parameters, until the optimal and feasible configuration is achieved. To 
overcome this challenge, neuronal networks can be employed to identify 
complex non-linear relationships among the design parameters.  

This paper proposes a methodology that integrates MLPs to explore design 
space to determine the best fitting design solution and the desired parameter 
configuration in the sheet metal forming process. Particularly, this paper 
contributes by: 

• Providing an approach that utilizes MLPs to accelerate the design process 
of sheet metals 

• Experiments and result comparisons between the proposed approach, 
prior research, and recently introduced AI models 

• Evaluating the proposed solution using real-world data 
• Assessing the suitability of addressing two key issues that should be 

considered when implementing data-driven solutions 

This paper is structured as following. Section 2 covers the related works to 
sheet metal forming and recent trends in machine learning that can leverage the 
data from sheet metal forming process. Section 3 describes our approach in 
detail. Section 4 follows with our experimental setup, including datasets, AI 
models used for performance comparison, and evaluation methods in detail. 
Section 5 discusses and examines the experimental results. Section 6 provides 
an in-depth exploration of potential challenges and scenarios encountered when 
integrating data-driven solutions in real-world applications. Our intuitive and 
user-friendly application, seamlessly integrating our proposed model, is 
highlighted in Section 7. Section 8 concludes our research by summarizing the 
key contributions and covering the findings from the research and experiment. 
Finally, suggestions for potential improvements are provided. In the appendix, 
we offer a comprehensive description of the architecture of the proposed 
model, including the number of layers and neurons that define the model’s 
structure. 

 



2. Related Work 

H. Liu et al. [18] highlighted that AI methods are widely utilized in sheet metal 
forming. However, most of the collected metal forming data would lack critical 
information of the formed products and metal forming process itself. This leads 
to unstable and inaccurate predictions while applying the AI methods on a 
different metal forming process since the available training data is insufficient. 
In A. Derogar et al. [3], an AI model was designed to predict forming limit 
diagrams for titanium and aluminium alloy sheets. W. Muhammad et al. [4] 
proposed an AI model to predict microstructural features such as the size, 
shape, and volume fraction. In I. Czinege et al. [21], an AI model was proposed 
to predict minor and major strains based on forming limit curves. A. Marques 
et al. [22] and T. Trzepieciński et al. [23] also proposed AI models for 
predicting fracture strain and friction, which are key outputs in sheet metal 
forming. To the best of our knowledge, there has been limited research on 
predicting various design parameters using AI methods in the context of sheet 
metal forming process, and no comprehensive methodology has been deployed. 
Papers we have reviewed have focused on applying AI methods in predicting a 
limited number of targeted design parameters, which are trained on a small 
amount of metal part and material type data. When applying an AI method 
trained on a small amount of metal part and material type data to real-world 
scenarios, it may not perform well when new metal parts or materials are 
introduced. This is because the trained AI model has not learned about these 
new metal parts and materials, making it an exclusive model rather than an 
inclusive one. The model we proposed aims to be inclusive and trained on data 
from 10 different metal parts as illustrated in Figure 3. We have confirmed that 
it performs well when new metal parts are introduced. Additionally, since the 
model was trained to predict 10 feasibility and formability parameters 
simultaneously, it has learned to capture the relationships across these 
parameters and make accurate predictions.  

Data can be appeared in various formats, such as tabular, time series, images, 
text, audio, and video. In S. Kashid et al. [1], a review paper, the existing 
literature on the application of AI methods to sheet metal forming process 
summarizes data in tabular format. Additionally, it was also confirmed that the 
data from W. L. Chan et al. [2], A. Derogar et al. [3], F. Han et al. [10], A. 
Alsamhan et al. [19], I. Czinege et al. [21], A. Marques et al. [22], and T. 
Trzepieciński et al. [23] all followed the tabular data format. The data acquired 
for training our proposed model is also in tabular format. Since the data is in 
tabular format, many researchers have conducted experiments using AI models 
specifically designed for tabular data format. Among these, MLPs have been a 
popular choice due to its effectiveness in handling structured data. In the field 
of AI, regardless of the industry, selecting an MLP-based model for tabular 
format has long been considered the obvious and default choice. However, the 
AI field is advancing rapidly, and new models capable of handling tabular data 
are continually being developed. These emerging models provide alternative 
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approaches to the traditional MLP, offering opportunities to improve 
performance and adapt to the evolving demands of AI applications. To the best 
of our knowledge, we have not come across a recent study that compares AI 
models specifically designed for tabular data. In this paper, we aim to explore 
the potential of new AI models for this purpose. Notable among these AI 
models except MLP are TabTransformer by X. Huang et al. [7] and TabNet by 
S. Ö. Arik et al. [8]. TabTransformer, introduced in 2020, is a deep learning 
architecture for tabular data modeling, inspired by the attention mechanism 
from Transformer by A. Vaswani et al. [9], enabling models to dynamically 
focus on relevant parts of the training data, similar to how humans pay 
attention to certain aspects of a visual scene or conversation. On the other 
hand, TabNet, introduced in 2021, utilizes a sequential attention mechanism to 
focus on the most relevant features at each decision step, providing both 
interpretability and efficiency.  

Based on the research we have reviewed, there has been no inclusive model 
proposed specifically for sheet metal forming, while our model is trained to 
work well with new metal parts and capture the relationships between multiple 
targeted parameters. Furthermore, none of the papers we found, including X. 
Huang et al. [7] and S. Ö. Arik et al. [8], addressed the latest trends in AI, such 
as transformer-based approaches. What distinguishes our study is that our 
proposed methodology allows for broad application across various metal parts, 
materials and design parameters. By examining the latest modeling and 
evaluation techniques in AI, we aim at providing a compressive approach with 
high-performance and predictive power, as out detailed evaluation proves. 

 

3. Methodology 

Optimizing design parameters by simulating various design combinations can 
be inefficient and time-consuming when trying to identify feasible and desired 
parameter configurations, as it requires multiple cycles to achieve this goal. 
Our approach predicts design parameters trained on the limited design space to 
identify the most optimal design parameters within the design space defined by 
users. 

According to V. L. Hattalli et al. [15], the quality of metal parts formed by the 
sheet metal forming process depends on multiple parameters such as material 
properties, including Young’s modulus and yield strength, geometry of the 
workpiece, lubrication, process parameters (applied forces etc.) and more. In 
principle, it is possible to acquire good quality parts by optimizing the process 
parameters. Figure 1 shows the design parameters that decide the quality of 
parts. Parameters with inward arrows represent design parameters fixed 
depending on materials and their properties, as well as geometry, lubrication, 
and process parameters. Parameters with outward arrows are feasibility and 



formability parameters, which are the targeted design parameters we aim to 
predict.  

 

Figure 1:  Design parameters in sheet metal forming 

As mentioned previously, the research papers such as W. L. Chan et al. [2], A. 
Derogar et al. [3] and F. Han et al. [10] have focused on integrating MLP to 
predict a few design parameters. Consequently, if there are multiple parameters 
to predict, a less efficient approach is adopted, requiring training a separate AI 
model for each target parameter. The potential problem in previous research is 
that the independently trained AI models fail to capture the interdependencies 
among the parameters being predicted. Our proposed MLP model addresses 
and resolves this issue effectively. As illustrated in Figure 2, multiple design 
parameters, including material properties and more, are used to train our MLP 
model to learn the complex interrelationships among the parameters. Detailed 
explanations of the architecture are provided in Appendix A. As a result, our 
model predicts multiple design parameters simultaneously, and its accuracy 
comes from the model’s ability to understand and learn the relationships across 
these parameters.   
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Figure 2:  Architecture of our proposed MLP model 

 

4. Experimental setup 

Bellow, we describe the experimental setup used in this paper. We start with 
describing the dataset in Section 4.1, followed by the AI models used for 
comparison in Section 4.2. The evaluation metrics are described in Section 4.3. 

4.1. Dataset 

To obtain the dataset for training our MLP model, we executed multiple 
simulations on 10 metal parts as illustrated in Figure 3, including A-Pillar, B-
Pillar, Tail gate, Cross member, and so on, with various configurations, 
resulting in a total of 857 variants. The dataset was split into training, 
validation and test sets with a ratio of 80/10/10.  
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Figure 3:  Training dataset of 857 variants with 10 metal parts 

 

4.2. AI models for comparison 

To demonstrate the superior performance of our proposed MLP model, we 
trained AI models commonly used in previous on the dataset we obtained. 
Next, we compared their performance in terms of prediction accuracy to 
determine which model operates most effectively. The list of AI models used 
in this paper for performance comparison are shown in Table 1.  

Table 1:  List of AI models used in this paper  
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4.3. Evaluation metrics 

In regression tasks that aimed at minimizing errors between predicted and 
actual values, the most commonly used evaluation metrics are Mean Absolute 
Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error 
(RMSE). MAE measures the average magnitude of errors between predicted 
and actual values. MSE calculates the average of the squared errors between 
predicted and actual values, giving more weight to larger errors whereas RMSE 
is the square root of MSE, providing error magnitude in the same unit as the 
target values, making it more interpretable. In this paper, we use the following 
metrics that widely used to compare the performance of our MLP model to 
other AI models:  

• Mean Absolute Error (MAE) 
• Mean Squared Error (MSE) 
• Root Mean Squared Error (RMSE)  

 

5. Result 

We compared our approach with six AI models to evaluate their performance 
in predicting targeted design parameters. The evaluation results for the models 
are listed in Table 2. The results show that our model significantly outperforms 
the previous research such as Multiple MLPs by Rosenblatt, F. [14] with MAE 
values of 7.08 (training split), 6.87 (validation split), and 6.61 (test split), 
compared to 73.11, 76.72, and 76.67, respectively, indicating better accuracy 
and generalization. Decision Tree and Random Forest, which are typically used 
for tabular data formats, also exhibited weaker performance compared to ours. 
Furthermore, TabTransformer and TabNet showed lower performance 
compared to than ours as well. XGBoost showed better performance in the 
training split with MAE of 0.71, MSE of 6.82, and RMSE of 2.61, but its 
performance worsened in the validation and test splits, with higher MSE and 
RMSE values, indicating ultimately less promising due to overfitting issues. 
When a model has higher MSE and RMSE in the validation and test splits 
compared to the training split, it means that the model is not generalizing well 
to new design configurations. In other words, it would not perform well on data 
with a slightly different configuration or a new metal part, while it would make 
accurate predictions on data like the data we used to train the model.  

 

 

 

 



Table 2:  Evaluation results 

 

When compared to other AI models, our approach outperforms others in 
predicting the targeted design parameters with smaller errors. Although our 
model recorded higher MAE values across all data splits compared to Decision 
Tree, Random Forest and XGBoost, this could be due to a few larger errors that 
have less impact on MSE and RMSE because of their squaring nature. While 
MSE and RMSE are more sensitive to larger deviations, they are balanced by 
smaller errors, whereas MAE directly averages the errors without amplification 
according to V. Plevris et al. [16]. Additionally, our model shows minimal 
performance differences across each data split. For instance, our model 
achieves RMSE of 12.40 (training), 13.46 (validation), and 11.46 (test), while 
XGBoost shows MAE of 2.61 (training), 24.25 (validation), and 19.81 (test). 
This highlights that our model not only generalizes better but also maintains 
consistent performance across all splits. Furthermore, rather than training 
multiple MLP models for each target parameter, as often adopted in previous 
research, our model effectively captures the correlations and hidden 
relationships among the targeted design parameters, showing superior accuracy 
and reliability compared to Multiple MLPs.  

 

6. Case study 

When adopting data-driven solutions in various industries, the main concern is 
whether the training data can represent the entire range of data, as in our case, 
various metal part designs. Additionally, there is always the question of 
whether a trained MLP model can effectively predict new input data with 
different patterns than the training data, such as new configurations and new 
metal part designs in our case. Since the model is trained on 10 different metal 
parts with several configurations, two fundamental questions arise:   

• Can it accurately predict designs with new configurations parameters that 
are not used for model training? 

• Can it effectively predict design parameters of entirely new and different 
metal parts?  
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The subsequent sections address each of these questions. 
 

6.1. Metal parts with new configuration 

To demonstrate that our approach performs well on configurations beyond 
those used for model training, we created 1039 different variants using the 
same metal part designs used for model training, but with configuration 
parameters that were not included in the original training dataset. With the 
different metal parts designs that we used for model training as shown in Table 
3, our proposed model performs with similar accuracy on the new dataset as it 
did during training. With 1039 different variants, the MAE did only improve 
slightly, showing that our model can handle new configurations as well.  

Table 3:  Evaluation with new configurations and metal part designs (The table 
shows only the scores used for testing)   

 

 

6.2. New metal part designs 

To evaluate our MLP model on three new metal part designs as illustrated in 
Figure 4, we created 315 variants with entirely new metal part designs – Front 
fender, reinforced A-Pillar and Floor panel - that were not used in model 
training. As illustrated in Table 3, our model demonstrated consistent 
performance on the new metal part designs, with only a slight increase in 
evaluation metrics. The MAE rose from 6.61 to 6.9, MSE from 131.41 to 
133.80, and RMSE from 11.46 to 11.57, indicating only a minor decline in 
performance. These results suggest that our model generalizes well to 
previously unseen metal part designs while preserving accuracy. 

  

Figure 4:  315 variants with new metal parts 



This is likely because the model has successfully learned the structural 
behaviours and relationships among parameters across various metal part 
designs that used for model training. 

 

7. Graphical user interface 

We developed a user-friendly graphical interface leveraging our MLP model to 
enable users to explore the entire design space that users defined and directly 
determine design configurations, making the process more intuitive and 
accessible. In our application, when users select a design and material, the 
parameters related to material properties are automatically set based on the 
chosen material. The remaining parameters, for example, blank thickness and 
friction coefficient, are directly defined by the user to explore the desired 
design space.  

 

Figure 5:  Design space setup interface – Users define the space they want to explore 
for blank thickness, blank holder pressure, friction coefficient, and drawbead forces 
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Figure 6:  User-friendly design space explorer – Users can easily compare the 
predicted feasibility and formability parameters in real time.  

Afterwards, our MLP model predicts the targeted design parameters such as 
feasibility and formability parameters based on material properties and the 
defined design space. Users can explore the design space interactively and 
observe how the targeted parameters respond to selected inputs through 
graphical visualizations. Once users finalize the parameters for simulation, our 
application is designed to seamlessly integrate these values into a forming tool 
called OpenForm. After the FE-model is prepared (pre-processing stage), the 
model will be simulated using the parameters predicted by our MLP model. 
Afterwards the simulation result has to be analysed (post-processing stage).  

 

8. Conclusions and potential improvements 

Designing sheet metal parts is a complex task requiring deep engineering 
knowledge and years of experience. To shorten this time-consuming process, 
many researchers have started adopting AI methods in their works. In this 
paper, a new MLP model was designed for predicting multiple targeted 
parameters for sheet metal forming. The results show that our MLP model 
outperforms existing models, and it is superior to the state-of-the-art models 
emerging in the AI field. Additionally, we were able to show the predictive 
capability of our model for new metal parts and configurations. It demonstrates 
that our model works inclusively and robust across a wide range of scenarios 
often encounter in the industrial forming processes.  



Integrating our proposed approach into the conventional forming simulation 
process could be achieved as follows: 

• MLP model prediction: our model predicts optimal design parameters 
within the design space defined by users. 

• Simulation execution: a simulation is executed with the predicted 
parameters.  

• Result analysis: the simulation result is analysed to validate our MLP 
model’s predictions.  

• Iterative improvement: based on the analysis, our MLP model can be 
further improved, and the cycle of prediction, simulation, and analysis 
leads to continuous improvement of the MLP model.  

This automated process not only improve simulation efficiency but also 
enhance the accuracy of predictions. By extending this approach, we can 
further increase the accuracy and efficiency of forming simulations, leading to 
faster and more reliable decision-making in future metal part designs. 
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Appendix A: Architecture details 

In this appendix, we provide a comprehensive description of the architecture 
used for the proposed model. This section includes details on the number of 
layers, neurons in each layer, activation functions and other essential 
parameters that define the structure of the proposed model.  

1. Overview 

The proposed model consists of 6 hidden layers and an output layer. The input 
layer takes the material properties, geometry of the workpiece, lubrication, and 
process parameters as features, while the hidden layers capture relationships 
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between features. The output layer predicts feasibility and formability 
parameters.  

2. Layers configuration 

• Input layer: The input layer contains 12 neurons, where 12 represents the 
number of features in the data.  

• Hidden Layers: 
o Layer 1: 256 neurons 
o Layer 2: 20 neurons 
o Layer 3: 420 neurons 
o Layer 4: 100 neurons 
o Layer 5: 184 neurons 
o Layer 6: 300 neurons  

All hidden layers use the ReLU (Rectified Linear Unit) activation 
function.  

• Output Layer: The output layer consists of 10 neurons with a linear 
activation function, which predicts the feasibility and formability 
parameters.  
 

3. Optimizer and Hyperparameters 

• Optimizer: The model uses Adam optimizer with a learning rate of 0.001.  
• Batch size: A batch size of 32 was selected. 
• Epochs: The model was trained for 100 epochs with early stopping based 

on the validation loss to prevent overfitting. If the validation loss did 
not improve for 30 consecutive epochs, training was stopped.  


