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Abstract 

In the lifetime of a vehicle, ease of use and quality of appearance is as 
important a goal as the longevity of the vehicle: engineers do not only need to 
manufacture a car whose various mechanisms will remain functional without 
defects after continuous use, but they must also ensure that the users will be 
able to operate it comfortably. 

This study aims to optimize the design and manufacturing of the tailgate 
component of a vehicle on two fronts: manufacturing quality and user comfort. 
The optimization process involves the modification of the gas lifter 
components positions in each design iteration in order to perform Multi-Body 
Dynamic simulations followed by Structural analyses. The goal is to find an 
optimal design that maintains the deformations of the tailgate component at 
reduced levels resulting in optimum external appearance regarding panel gaps, 
as well as comfortable user operation. 

Machine Learning predictive models (also referred to as predictors) are 
employed to accelerate the product design and evaluation process. Engineers 
can explore various what-if scenarios and extract the necessary key responses 
for each modification applied to the vehicle, to estimate its improved 
performance and usability, without sacrificing the design time. At the same 
time Machine Learning predictors are employed in Optimization studies, 
replacing the FE (Finite Element) Solver, in order to reach the optimum design 
in an automated and faster way, thus, improving the product development time. 

In this study three optimization approaches are presented, utilizing machine 
learning methods that predict simulation results for two different analyses. 
Compared to the established "Direct" optimization method (design updates, FE 
analysis, post processing), the Machine Learning assisted Optimization 
methods significantly reduced the optimization time while maintaining similar 
levels of accuracy. This allowed for more optimizations studies resulting in 
reduced product development time and increased product performance.  

 



1. Problem Description 

As technology advances, automotive design and manufacturing becomes more 
and more challenging. The requirements for emissions and efficiency are 
stricter and the market necessitates excellent quality. For such reasons, the 
design and manufacturing of automotive closures (tailgate, hood) becomes 
more and more complex. The gas lifter components, mechanisms responsible 
for the opening and closing of the closures, could cause undesired deformations 
that not only affect the durability and performance of the structure but also 
reduce the appearance quality.  

A common solution for this issue involves increasing the thickness of the sheet 
metal panels to reduce the deformations. However, this increases the weight of 
the structure, leading to more manufacturing and running costs, while limiting 
the usability of the closures. 

In continuation of the study by J. Shin and A. Paraschoudis [1], an automated 
optimization process has been suggested that combines Structural and Multi-
Body Dynamics analyses and Machine Learning solutions. This work aims to 
reduce panel deformations on the tailgate closure, maintain comfortable use 
and evade the common solution of increasing the sheet metal thickness to avoid 
deformations. To accelerate the optimization processes, three approaches 
employing the Machine Learning capabilities of ANSA [2], an advanced 
multidisciplinary CAE pre-processing tool, have been investigated. 

 

2. Finite Element Modelling, Load-case set up 

A finite element model of a vehicle’s tailgate was created (Figure 1). The load-
case set up was performed using an automated process and, initially, involved 
the definition of the kinematic bodies and the connectivity joints, components 
necessary for the Multi-body Dynamic (MBD) analysis.  Following, the 
loading and boundary conditions were defined. These were the force applied by 
the gas lifters on the tailgate mounting points, and the handling force in a user 
specified location, representing the required user effort to open/close the 
tailgate, calculated through differential equations (Figure 2). 
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Figure 1:  Finite Elements model of Tailgate 

 

 

 

 

Figure 2:  a) Multi-Body Dynamics and b) Structural load-case 



 

Figure 3:  Tailgate closures deformation 

The deformation results of the entire tailgate were obtained from the structural 
analysis (Figure 3). Regarding the MDB analysis, for every angle of the 
tailgate, a static equilibrium simulation is executed. For each angle, the 
handling force required is calculated through the previously defined differential 
equations. This process was performed once for opening and once for closing 
as the gas lifter characteristics are different for each scenario. The result of this 
analysis was two curves plotting the handling force per angle for the opening 
and closing of the tailgate. 

 

Figure 4:  Handling Force vs Tailgate Angle during Opening/Closing 
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3. Parametrization - DOE 

Five design variables were defined for this parametric model, in order to be 
optimized; one that controlled the value of the preload Force (F1) applied by 
the gas-lifter mechanism to the structure and four that modified the X and Z 
components of the gas-lifter attachment points (S1 and S2). 

From the structural analysis, two responses were extracted (through post-
processing) that calculated the deformations on the specified measuring points 
on the critical locations of the tailgate panel (Nodal_dx_1, Nodal_dx_2). 

According to the specifications of the manufacturer, in order to maintain 
comfortable use, the user effort should be minimized when the angle of the 
tailgate is within a specific range. The design of the structure is to be optimized 
for ease of use in both opening and closing scenarios at the same time. Thus, 
from the MBD analysis, two responses were extracted that corresponded to the 
coordinates of the intersection point of the two curves (Force, Angle). For the 
Force response, in specific, the absolute value of the y-coordinate was used, as 
this response would participate as the objective of the optimization study. 

 

4. Optimization Setup 

A workflow for the optimization process was defined in the Optimization tool 
of ANSA. The goal of the optimization process was to minimize the 
deformations and the absolute value of the handling force, while the angle 
remains constrained according to specifications from the manufacturer (x1, 
x2). The optimization algorithm used was NSGA-II/ DE / IDEA, an algorithm 
suitable for multi-objective optimizations [3]. The selected algorithm is a 
combination of three well-known optimization algorithms from literature: 1) 
NSGA-II, a multi-objective optimization, which allows for diversity among the 
solutions of each optimization iteration by sorting them into fronts in two 
different stages with the non-dominated sorting and crowding distance criteria, 
2) Differential Evolution, an optimization algorithm responsible for the 
generation of the design population of each iteration, able to search very large 
areas of the design space for possible solutions, and 3) IDEA, an algorithm 
responsible for handling design constraints, which drives the optimization 
process to the region of infeasible designs (where optimal solutions have been 
observed to lie in constrained optimization studies) by maintaining a 
percentage of infeasible solutions into the design population. 

The parameters of the selected optimization algorithm are listed in Table 1. 
Multiple parameter configurations were tested; the selected one was found to 
allow for better design space exploration and avoid excessive diversity among 
the solutions of each population. 



Table 1:  Optimization Study Parameters 

Crossover factor 0.8 

Initial Population size 10 

Mutation factor 0.7 

Mutation factor range 0.2 

Proportion of infeasible designs 
(IDEA) 

0.2 

Convergence Tolerance 0.0001 

Objective1 Minimize deformations: 
Nodal_dx_1, Nodal_dx_2 

Objective 2 Minimize Force 

Constraints x1<Tailgate Angle<x2 

 

Initially, a Design of Experiments (DOE) process created 20 designs using the 
Optimal Latin Hypercube sampling algorithm. For each of these experiments, 
the MBD and structural analyses ran, and the 4 responses were extracted. 

A direct optimization study was also conducted in order to better evaluate the 
benefits of introducing Machine Learning functionalities in the optimization 
process.  
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Figure 5:  Direct Optimization results 

 

The optimization converged to a pareto front of optimums after 190 iterations 
(Figure 5). The overall time required for the direct optimization required 
around 157.5 hours, consisting of the processes listed in Table 2. 

Table 2:  Required time for Direct Optimization approach 

Sub-process Required time 

20 DOE study Experiment Runs  ~ 14 hours 

Direct Optimization (190 runs) ~ 143 hours 

Total ~ 157.5 hours 

 

5. Machine Learning 

Machine learning was utilized in order to speed up the optimization process. 
Specifically, a response surface model (RSM) was trained utilizing various 
regression machine learning algorithms, and was able to predict the simulation 
results, avoiding the need to run the FE analyses. 



The initial DOE study of 20 experiments was used as training dataset for 
Machine Learning predictive models, also referred to as predictors or RSMs, 
that were able to predict the selected simulation results (key value responses, 
curves, field results) of new theoretical experiments (by giving new input 
Design Variable values) much faster than the two FE solvers.  

The automated process that takes place during the Machine Learning training 
considers the use of multiple candidate ML algorithms, to be fitted upon the 
training data. For each of those algorithms, hyperparameter tuning is performed 
and then, each is tested internally against some experiments of the provided 
training dataset. This provides the error estimation for the generalization 
capabilities of each candidate predictor. The candidate with the least Mean 
Absolute Error (MAE) exhibited during the internal testing is the one provided 
as the final ML model. [4] 

The time required for the training of an ML predictor varies according to the 
complexity of the results (1D Key Value responses, 2D curves, and full 3D 
field results), the training dataset size and the number of the selected output 
responses that the ML predictor will be trained upon. In this work, the training 
time for ML models, with DOE studies of 20 experiments as training data, that 
predicted the respective output is presented in Table 3. 

 

Table 3:  Machine Learning Training time per predicted result for 20 experiments 

Trained ML predictor output ML training time 

Key Value: Force, Angle, Nodal 
deformations 

~ 1.5 minutes 

Curves: Opening and Closing Force-
Angle curves 

~ 2.5 minutes 

Accompanying the trained ML model are various Key Performance Indicators 
(KPIs) that showcase its performance, accuracy and the dependence of the 
estimated responses to the input parameters (design variables). The primary 
metrics for evaluating the accuracy of the trained ML models in this study were 
Mean Absolute Error (MAE) of the predictive model, from the internal testing 
process during the training, and Predictive Power Score (PPS) an early 
indicator of the suitability of the dataset to train an accurate ML model that 
takes values between zero and a hundred percent (0-100%). 
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In this study, 3 different approaches were investigated. In each case, an 
optimization study was defined utilizing the Machine Learning predictor as 
RSM and optimal solution were obtained. 

 

5.1.    1st Approach 

 

Figure 6:  1st Machine Learning Optimization Workflow 

With the initial DOE study of 20 experiments, a Predictor was trained for the 4 
Key Value responses (Nodal deformations, Force and Angle). From the KPIs, 
it was shown that the predictor could achieve good predictive accuracy for the 
deformation responses. However, the accuracy of the force and angle 
predictions required improvement. 

 

Table 4:  Accuracy Metrics of the Initial RSM, trained with a DOE of 20 
experiments 

 Test error: MAE Predictive Power Score  

Force 5.6598 9.59% 

Angle 1.2032 66.79% 

Nodal dx 1 0.0044 96.43% 

Nodal dx 2 0.0045 96.21% 



Using a Smart Sampling process, 40 new experiments were generated, solved 
and added in the training dataset. The predictor was retrained using the 
additional data and the predictive accuracy was re-evaluated. Although the 
errors were reduced, the performance could be improved further.  

Since this predictor was going to be used in an optimization study, the goal was 
to achieve good accuracy around the region of the design space close to the 
optimal solutions. Thus, this improved predictor was used in a preliminary 
optimization study in order to identify the optimal region.  

This preliminary optimization run identified an area of interest, narrowing the 
design space. 

A new DOE study was created with 20 new experiments around the optimal 
solution of the preliminary optimization study. The new experiments were 
added to the training dataset and the predictor was retrained. The KPIs for the 
improved RSM are presented in Table 5. 

 

Table 5:  Accuracy Metrics of the Improved RSM, trained with 80 experiments 

 Test error: MAE Predictive Power Score  

Force 3.2826 40.48% 

Angle 0.7535 79.54% 

Nodal dx 1 0.0037 97.62% 

Nodal dx 2 0.0039 97.45% 

It is worth mentioning that the values that appear in Tables 4 to 7 correspond to 
the error estimation of the predictor throughout the whole design space. 

In the following tables (Tables 6, 7), the same accuracy metrics are presented 
for every 20 more experiments added in the training dataset for the predictors: 
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Table 6:  KPIs for Force and Angle response predictions for every 20 more 
experiments included in the training 

 Force  Angle  

DOE No Test error: 
MAE 

PPS Test error: 
MAE 

PPS 

20 5.6598 9.59% 1.2032 66.79% 

40 5.7662 16.93% 0.9056 75.67% 

60 3.9107 22.82% 1.0441 76.50% 

80 3.2826 40.48 0.7535 79.54% 

 

Table 7:  KPIs for Deformation response predictions for every 20 more 
experiments included in the training 

 Nodal dx 1  Nodal dx 2  

DOE No Test error: 
MAE 

PPS Test error: 
MAE 

PPS 

20 0.0044 96.43% 0.0045 96.21% 

40 0.0048 96.41% 0.0049 96.16% 

60 0.0048 96.94% 0.0049 96.74% 

80 0.0037 97.62% 0.0039 97.45% 



A new optimization study was defined, utilizing the final improved predictor. 
The result of this optimization study was a Pareto front of 8 experiments that 
were validated, and the validated optimal result can be found in Table 8. 

 

Figure 7:  ML 1st Approach: Predicted Optimization Results 

 

Table 8:  ML 1st Approach: Validated Optimal Result 

 F1 S1_X S1_Z S2_X S2_Z Nodal 
dx1 

Nodal 
dx2 

Angle Force 

Initial 600 3388.346 963.711 3218 1203 1.4573 1.4155 9.4499 6.5821 

Optimized 404.939 3392.924 969.289 3219.425 1201.798 0.5519 0.5189 19.017 0.7731 

 

The overall time required for the 1st approach is around 63 hours, consisting of 
the processes as defined in Table 9. 
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Table 9:  Required time for 1st ML Optimization  

Sub-process Required time 

80 DOE study Experiment Runs for the ML 
training 

~ 55 hours 

Initial RSM Optimization 23 minutes 

Final RSM Optimization (390 runs) 39 minutes 

8 Validation Runs ~ 6 hours 

Total ~ 63 hours 

 

 
 

5.2.    2nd Approach 

After evaluating the results from the 1st approach, we deduced that for each of 
the Simulation Runs analyses of the original “Direct” optimization, most of the 
computational time is used for the Structural FE analysis. Additionally, based 
on the performance of the ML predictors trained during the 1st approach, with a 
small dataset of only 20 experiments, it is possible to achieve very good 
predictive accuracy for the deformation responses but not for the MBD 
responses. Evidently, additional data are required in order to achieve 
significant reduction in the error estimation for the Force and Angle responses, 
related to the Multi-Body Dynamics solution. 

Based on these observations, a hybrid solution was developed that used an ML 
predictor to substitute the Structural solution but ran the MBD analysis 
normally. This approach overcame the lower accuracy of the predictions for the 
MBD responses when smaller training datasets are used and still accelerated 
the optimization study by employing an ML model to substitute the Structural 
solution, at the cost of increasing the complexity of the setup for the 
Optimization process. 



 

 

Figure 8:  2nd Machine Learning Optimization Workflow 

For this 2nd approach, with the initial DOE of 20 experiments, an ML predictor 
was trained on the two deformation responses. This predictor replaced the 
analysis responsible for the Structural solution while the rest of the workflow 
remained the same. An Optimization study ran and resulted in a pareto front of 
4 experiments (Figure 9). 

 

Figure 9:  ML 2nd Approach: Predicted Optimization Results 

 



Automotive Closures Optimization employing Machine Learning 

Table 10:  ML 2nd Approach: Validated Optimal Result 

 F1 S1_X S1_Z S2_X S2_Z Nodal 
dx1 

Nodal 
dx2 

Angle Force 

Initial 600 3388.346 963.711 3218 1203 1.4573 1.4155 9.4499 6.5821 

Optimized 402.1
53 

3392.580 969.119 3221.417 1201.767 1.1522 1.1709 19.645 0.2402 

 

The overall time required for this 2nd approach was 18.5 hours. The time 
required for each individual process appears in Table 11. 

Table 11:  Required time for 2nd ML Optimization 

Sub-process Time required 

20 DOE Runs for the ML training ~ 14 hours 

Optimization Study (200 runs) ~ 100 minutes 

4 Validation Runs ~ 2.5 hours 

Total ~ 18.5 hours 

 

 

5.3.    3rd Approach 

Further improvement could be achieved utilizing the additional capability of 
Data driven or Design Variable based ML methods that is to train ML models 
to predict simple key value responses, 2D curve results as well as full field 
results. 



  

Figure 10:  3rd Machine Learning Optimization Workflow 

The results from the MBD analysis were primarily two Force –Angle curves 
(Figure 4) from which we extracted the values of the intersection point between 
the two. This suggested that a ML model could be integrated into the workflow 
(replacing the MBD analysis) that would be able to predict the Force-Angle 
curves. Then, the predicted curves would be automatically post-processed in 
order to calculate the Force and Angle responses from their intersection point. 

Using the original DOE of 20 experiments an ML predictor was trained to 
predict the Opening and Closing Force-Angle curves of the MBD analysis. The 
KPI’s of this predictor showed very good accuracy predicting both curves 
(Figure 11), with the Closing curve showing almost no mean absolute error 
Figure 12). 
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Figure 11:  Real and Predicted Opening/Closing Force-Angle curves 

 

Table 12:  KPIs of Key Value Deformation and Curve predictions 

ML Predictor Output Predictor Test MAE 

Nodal dx 1 0.0045 

Nodal dx 2 0.0046 

Opening Force-Angle curve 1.1448 

Closing Force-Angle curve 1.6360E-06 

At the same time, a predictor was trained to predict the key value deformation 
responses (similar to the 2nd approach) and both predictors replaced the 
Structural and MBD analyses in the workflow, respectively. The Optimization 
study ran and resulted in a pareto front of 4 experiments (Figure 12). 



 

Figure 12:  ML 3rd Approach: Predicted Optimization Results 

 

Table 13:  ML 3rd Approach: Validated Optimal Result 

 F1 S1_X S1_Z S2_X S2_Z Nodal 
dx1 

Nodal 
dx2 

Angle Force 

Initial 600 3388.346 963.711 3218 1203 1.4573 1.4155 9.4499 6.5821 

Optimized 412.598 3392.672 965.396 3215.966 1202.498 1.1869 1.1572 18.5308 0.4326 

 

With this approach, the overall time required was around 17.5 hours. The 
individual sub-processes and their required time are listed in Table 14. 

 

Table 14:  Required time for 3rd ML Optimization 

Sub-process Time required 

20 DOE Runs ~ 14 hours 
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ML Optimization (120 runs) ~ 47 minutes 

4 Validation Runs ~ 2.5 hours 

Total ~ 17.5 hours 

 

6. Results Validation 

The validation of each of the Machine Learning applications was based on two 
methods: 1) the overall time required to reach an optimal solution, and 2) the 
achieved predictive accuracy, based on the size of the training dataset. 

 

6.1.    Time Required for the Optimum 

Table 15: compares the optimal design found with each approach against the 
initial design, as well as the time required to reach it. 

 

Table 15:  Comparison of Optima of each approach against the initial design 

 

Optimal 
Design 

F1 S1_X S1_Z S2_X S2_Z Nodal 
dx1 

Nodal 
dx2 

Angle Force Time 
hours 

Initial 
Reference 

600 3388.346 963.711 3218 1203 1.4573 1.4155 9.4499 6.5821 - 

Direct 
Optimal 

400.304 3391.47 967.006 3219.88 1201.45 1.172 1.143 17.8722 0.009097 157.5 

Approach 1 404.939 3392.924 969.289 3219.425 1201.799 0.5519 0.5189 19.017 0.7731 63 

Approach 2 402.153 3392.580 969.119 3221.417 1201.767 1.1522 1.1224 19.592 0.2402 18.5 

Approach 3 412.597 3392.672 965.395 3215.965 1202.498 1.1868 1.1571 18.531 0.4326 17.5 



Based on Table 15, all four techniques were able to reach an optimal solution. 
However, employing Machine Learning models in the optimization task 
provided a significant reduction to the overall time required. 

 

6.2.    Accuracy of Machine Learning techniques 

In order to evaluate the accuracy of the three ML techniques, 8 designs close to 
the optimal solutions were created and solved. Then, each of the ML models 
was used in order to predict the responses of those designs. The MAE metrics 
for the predictions of each case were compared. For each case, a simple 
predictor trained with the original DOE of 20 experiments was also used for 
reference in the comparison. 

 

Table 16:  Validation experiments of Machine Learning predictors 

# F1 S1_X S1_Z S2_X S2_Z Nodal dx1 Nodal dx2 Angle Force 

1 428.4052 3392.742 957.4489 3217.545 1198.933 1.2333713 1.2025122 16.869503 0.455137871 

2 409.0520 3392.967 956.4480 3217.22 1201.975 1.2101646 1.1806173 19.945623 4.423322739 

3 400.8373 3392.837 959.2616 3218.973 1201.444 1.1909393 1.1619131 20.547092 3.061858805 

4 414.0651 3392.620 967.2282 3217.410 1203.017 1.1828664 1.1530121 18.578679 1.199505038 

5 400.8373 3392.749 967.8110 3217.224 1201.595 1.1639063 1.1349768 19.268696 1.494776419 

6 400.8373 3392.749 967.9720 3219.146 1202.876 1.1633213 1.1343131 20.037557 1.336624624 

7 404.9396 3392.924 969.2892 3219.425 1201.798 0.5519236 0.5188905 19.017102 0.773087997 

8 400.8373 3392.854 969.2786 3218.973 1204.167 0.5476908 0.5149033 20.419674 2.630435475 

 

For the Force and Angle responses it is worth mentioning that the 2nd ML 
approach did not utilize ML models for the calculation of the same responses, 
since it utilized the actual FE MBD solution, so it was omitted from this 
comparison. 

Table 17:  Force: Real vs Predicted values 

# Real RSM (DOE 
20) 

Approach 1: Improved RSM 
(DOE 80) 

Approach 3: 2D curve predictions 
(DOE 20) 

1 0.45513787 5.991 0.0869 0.807993 

2 4.42332274 7.4515 0.49630001 4.38157 
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3 3.0618588 7.2184 1.94260001 2.87836 

4 1.19950504 6.5221 2.40639997 0.472762 

5 1.49477642 5.4829 3.13529992 2.35065 

6 1.33662462 6.7234 3.60520005 0.632673 

7 0.773088 6.0494 4.67269993 1.62517 

8 2.63043548 7.1434 6.87919998 1.8843 

MAE - 4.65091888 2.33486121 0.55786155 

 

Table 18:  Angle: Real vs Predicted Values 

# Real RSM (DOE 
20) 

Approach 1: Improved RSM 
(DOE 80) 

Approach 3: 2D curve predictions 
(DOE 20) 

1 16.8695039 14.9817 17.3377991 16.7894 

2 19.9456231 16.3626 19.4507008 19.9347 

3 20.5470928 16.6374 19.7054996 20.4929 

4 18.5786794 16.2052 18.0501995 18.3915 

5 19.2686966 16.2352 18.6249008 19.0372 

6 20.0375571 16.7828 19.1676006  19.844 

7 19.0171029 16.3606 19.1604996 18.7902 

8 20.419675 17.045 20.0632992 20.1993 



MAE 

 

3.00917886 0.54335193 0.15059136 

 

For the Deformation responses, the 2nd and 3rd approach utilize the same ML 
model trained with the original DOE of 20 experiments. Thus, the comparison 
is between the original RSM trained with a DOE of 20 runs and the Improved 
RSM (trained with 80 experiments) of Approach 1. 

 

Table 19:  Deformations: Real vs Predicted values 

# Nodal dx1 RSM (DOE 
20) 

Approach 1: 
Improved RSM 
(DOE 80) 

Nodal dx2 RSM (DOE 
20) 

Approach 1: 
Improved RSM 
(DOE 80) 

1 1.23337138 1.2339 1.2318 1.20251226 1.2025 1.2009 

2 1.21016467 1.2116 1.2092 1.18061733 1.1814 1.1793 

3 1.19093931 1.19 1.1874 1.16191316 1.1603 1.1579 

4 1.18286645 1.1753 1.1725 1.15301216 1.1447 1.1417 

5 1.16390634 1.1549 1.1519 1.13497686 1.1252 1.1219 

6 1.16332138 1.1543 1.1513 1.13431311 1.1245 1.1211 

7 0.55192363 1.153 1.15 0.5188905 1.123 1.1197 

8 0.54769081 1.1482 1.1451 0.51490331 1.1184 1.1148 

MAE 

 

0.15376037 0.15449438 

 

0.15473955 0.15565638 

From the above comparisons, it can be observed that to accurately predict the 
Force and Angle Key Value responses, more data-points are required to be 
solved and used in the ML training, compared to the size of the training dataset 
for a predictor that can accurately predict the 2D curves. The difference in the 
achieved accuracy can be attributed to the relationship between the input 
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design variables and the output responses (Force-Angle curves, Force/Angle 
key value responses). In the case of the 2D predictor, the relationship between 
the input and output is simple. In the case of the key value responses, an 
additional layer of complexity is introduced in the input-output relationship as 
the responses are calculated on the intersection point of the two curves (an 
arbitrary point on the MBD curves) while the Force response is the absolute 
value of the y-coordinate of said intersection point. 

Regarding the MAE of the deformation predictions, it is observed that when 
we use a larger training dataset for the creation of the ML predictor, the MAE 
increases slightly. However, the observed increase in error is minimal and, 
thus, the MAE can be considered the same before and after the improvement. 

Additionally, the calculated MAE for the Force and Angle responses of the 
Improved RSM of the first approach is even lower on the Validation runs, than 
previously estimated from the predictor’s KPIs, also validating the improved 
accuracy of the RSM specifically in the region of the design space where the 
optimal solutions lie. 

7. Conclusion 

In this study, an automated process on the Optimization of Automotive 
closures using Machine Learning techniques was presented. Three different 
approaches were investigated and validated. The results of this work suggest 
that employing ML methods to create Response surface models allows for 
accelerated optimization studies with controllable accuracy. Additionally, 
simple key value responses, curves or full field results can be predicted with 
acceptable accuracy in the process of design exploration and testing of “What-
if” scenarios, avoiding the time-consuming FE Analyses. 
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