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Icons of CFD returns after a
long absence, profiling the
leading lights in the early
days of CFD.

In the late 1980’s, at the beginning
of my PhD, I recall staring at several
thousand lines of FORTRAN, which
apparently coded the governing
equations of fluid mechanics. This
largely-uncommented ‘spaghetti’
appeared indigestible. Where to
begin? I sought out my supervisor
and he passed me an unassuming
volume with the title: “Numerical
heat transfer and fluid flow”1. I
started to read, understood, and
continued, until the last page was
turned. The book explained with
sublime ease and clarity how one
could solve these equations, the
pitfalls to be avoided, finishing
touches to be applied, etc. I could
even start to identify
implementations of the numerical
methods so clearly described, in the
mess of code. It was no less than a
revelation. The author of the book?
Prof. Suhas Patankar.

Suhas Patankar was born in Pune,
India, from where he received his
Bachelor’s degree in Mechanical
Engineering in 1962, and a Master’s
in Technology two years later from
the Indian Institute of Technology,
Mumbai. He applied for, and won,
an ICI Scholarship to Imperial
College, London, where he was to
make his mark, under the
supervision of Prof. Brian Spalding -
who we met in Benchmark -
January 2010. 

In the early-1960s, the group led by
Spalding had just started out in
CFD, focusing on the numerical
solution of boundary layer flows.
These are the thin regions which

develop as flow passes over a solid
surface. They can be approximated
by partial differential equations
which are classified as ‘parabolic’ in
the main flow direction, i.e. they
show a ‘one-way’ behaviour along
the coordinate aligned with the
main flow direction. What do we
mean by this? Let Patankar be our
guide1:

“A one-way coordinate is such
that conditions at a given
location in that coordinate are
influenced by changes in
conditions on only one-side of
that location…...Even a space
coordinate can very nearly
become one-way under the
action of fluid flow. If there is a
strong unidirectional flow in the
coordinate direction, then
significant influences travel only
from upstream to downstream.
The conditions at a point are
then affected largely by the
upstream conditions and very
little by the downstream ones.
The one-way nature of a space
coordinate is an approximation.
It is true that convection is a
one-way process, but diffusion
(which is always present) has
two-way influences. However,
when the flow rate is large,
convection overpowers diffusion
and thus makes the space
coordinate nearly one-way.”

Patankar’s description allows us to
easily understand the mathematical
behaviour of the governing
equations for boundary layer flows.
This behaviour allows for significant
simplifications in the numerical
solution of such flows. The solution
can simply proceed from known
initial conditions at a given
upstream location, being ‘marched’

downstream and, at any given time,
the only flow conditions which need
to be stored are those at the current
and next downstream location. This
minimises both computer storage
and run time, which was of utmost
importance with the precious, but
limited, hardware available in the
1960s. Patankar successfully
developed and applied such
methods in his PhD on heat and
mass transfer in boundary layers2,
later publishing the computational
method and code – known as
GENMIX - in a book3 with Spalding.

GENMIX came to be widely used.
But many flows of engineering
interest are governed by equations
which are ‘elliptic’, rather than
parabolic, i.e. they show a two-way
coordinate behaviour1:

“A two-way coordinate is such
that the conditions at a given
location in that coordinate are
influenced by changes in
conditions on either side of that
location.”

In an elliptic equation, information
can propagate freely by convection
and diffusion in each of the
coordinate directions, i.e. both
downstream and upstream. There
are no limited regions of influence.
In a flow which is modelled as
elliptic, this means that the
influence of a change in conditions
– such as a local increase in pressure
– is felt everywhere. The numerical
‘marching’ methods used in the
solution of parabolic flows are no
longer applicable, as the solution
must instead be obtained for all
points in the flow simultaneously.

After completing his PhD, Patankar
worked as an assistant professor at
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the Indian Institute of Technology,
Kanpur, from 1967 to 1970. In this
period, Spalding’s group became
increasingly engaged in the
numerical solution of elliptic flow
problems. They had been successful
in solving two-dimensional flows,
but the methods* they were using
could not obviously be extended to
three-dimensional flows. To
understand some of the difficulties
in the solution of elliptic equations
for fluid flow, we must now turn
our attention to the governing
equations. 

The main physical principles which
apply are conservation of mass,
Newton’s 2nd law of motion applied
to fluid flows (i.e. rate of change of
momentum depends on the net
force applied), and conservation of
energy. 

The conservation of mass leads to
an equation which contains the
three velocity components, u, v, w
and density ρ. The application of
Newton’s second law of motion
leads to momentum conservation
equations for each of the three
coordinate directions, and in each of
these equations all of the velocity
components appear, together with
the pressure, p. Finally, the energy
equation relates the changes in local
internal energy with the prevailing
temperature field.

In the case of a compressible flow,
with heat transfer, the five
conservation equations typically
contain seven unknowns: the three
components of velocity, u, v, w;
pressure, p; density �; internal
energy per unit mass, e; and
temperature, T. In order to form a
closed set, we need two further
equations. For compressible flows,
thermodynamics provides the
necessary link. The internal energy is
related to temperature by the
relationship e = CvT, where Cv is the
specific heat at constant volume. An
equation of state can be used to
close the conservation equations
through the missing link: density ρ,
which varies as a result of changes
in pressure and temperature.
Usually, a simplifying assumption is
made that the gas is a calorifically
perfect gas behaving according to
the ideal gas law, i.e. p = ρRT,
where R is the gas constant. 

The solution of these governing
equations, usually referred to as the
Navier-Stokes equations in honour
of their 19th Century French and
English founders, is problematic.
The equations are non-linear and
highly coupled. For instance, every
velocity component appears in the
mass conservation equation and in
each of the three momentum
equations. Furthermore, whilst the
pressure appears in each
momentum equation, it has no
separate transport equation which
would readily allow its
determination throughout the entire
flow field. We now begin to see
why numerical solution of the fluid
flow equations is far from trivial.

For compressible flows, it is possible
to solve for the density field by
using the mass conservation
equation, and for the temperature
field by using the energy equation.
The pressure field can then be
obtained from its equation of state,
as above. 

But what about incompressible
flows, in which density is essentially
constant, i.e. most liquid flows and
those of gases at low Mach
number? Here the difficulties
become, if anything, even more
profound. The problem is how to
solve for the pressure field, if density
is constant. In the absence of heat
transfer, we have only the mass
conservation and momentum
equations. Pressure appears in the
latter equations, but not the former.
If we can somehow obtain the
correct pressure field, the resulting
velocity field will then satisfy the
mass conservation equation. That is
the key difficulty: obtaining the
correct pressure field. It is
compounded by the elliptic nature
of the incompressible fluid flow
equations, which demands that the
pressure and velocity fields must
simultaneously satisfy these
equations throughout the entire
three-dimensional flow domain. 

Such was the nature of the
difficulties being tackled by
Spalding’s group in the late 1960s.
Although some headway was being
made on the pressure-velocity
problem in three-dimensional elliptic
flows, with an algorithm known as
SIVA4 (Simultaneous Variable

Adjustment), it was proving very
complex. It was obvious at the time
that a superior alternative was
needed to SIVA, and which would
provide a way to calculate three-
dimensional elliptic flows as easily as
those in two-dimensions.

At this point, in 1970, Patankar
returned from India to take up a
research post in the Imperial College
group. He immediately set to work
on the problem. Within the space of
just a few weeks he had formulated
a far better approach. He presented
his algorithm to the research group
at its weekly progress meeting. It
was immediately clear that it had
significant advantages over the SIVA
method. Soon, almost the entire
research group was using Patankar’s
algorithm, whose acronym, SIMPLE,
was almost as brilliant as its
formulation.

This is not the place to describe the
SIMPLE algorithm in detail. Patankar
does so with great clarity in his
book1, as well as in his classic paper
with Spalding5. In addition, almost
every book published on general
CFD methods makes at least a
passing reference to his algorithm,
such has been its lasting impact.  

In essence though, the algorithm
consists of an iterative procedure, in
which the pressure and velocity
fields are solved sequentially. The
algorithm starts from a guessed
pressure field, with the pressure and
velocity components being updated
via simplified formulae relying on
‘pressure corrections’. Although
these correction formulae are
simplified, the algorithm
nevertheless ensures that at the end
of every iteration the velocity field
exactly satisfies the mass
conservation equation. When the
solution has converged, meaning
that sufficient iterations have been
made to ensure that both the mass
conservation and the momentum
equations are solved to tolerably
small residuals, the magnitude of
the pressure corrections becomes
vanishingly small. This means that
the simplifications made in the
correction formulae become
irrelevant to the final converged
solution. 

*During the period 1965 to 1970, Spalding’s group were successfully solving two-dimensional elliptic flow problems using the stream
function – vorticity method. When applied to two-dimensional flows, this approach results in two scalar quantities (stream function and
vorticity) being derived from the primitive flow variables, i.e. velocity. Solution for two scalar quantities was straightforward, but the
extension of the method to three-dimensions posed many problems.  



The author has, in part, drawn substantially from David Tatchell’s insightful blog which reflects on the commercial CFD
industry, and would like to acknowledge this source of material. See http://blogs.mentor.com/davidtatchell/ 
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Patankar had realised that as long
as the pressure and velocity fields
were being progressed towards a
converged solution of the
discretised equations, the correction
formulae need only be approximate.
As well as ensuring computational
simplicity, this allowed a significant
degree of flexibility to be introduced
into the algorithm. For instance,
differing degrees of under-relaxation
can be introduced for the different
flow variables, suited to particular
applications, i.e. some flow variables
can be allowed to change rapidly
from one iteration to the next,
whilst others are damped if rapid
changes are causing the solution to
diverge.

SIMPLE means: Semi-Implicit
Method for Pressure-Linked
Equations. The wording ‘semi-
implicit’ essentially refers to the fact
that, at each grid node, the
algorithm corrects the velocity field
by using pressure corrections at just
the immediate neighbouring grid
nodes – even though the velocity
field is, of course, affected by
pressure variations throughout the
flow domain. The basic SIMPLE
algorithm has been successfully
enhanced by several authors,
including Patankar himself – with
SIMPLER (SIMPLE Revised)1, and

variations such as SIMPLEC6, and
can be extended to unsteady or
compressible flows.

It is hard to over-state the
importance of Patankar’s SIMPLE
algorithm and its variants. For the
three decades after its invention it
was the default solution algorithm
for almost every vendor of finite
volume-based CFD software for
industrial applications. Since the
turn of the century, other solution
algorithms have come more to the
fore, based on strongly coupled
flow solvers. Even so, there are still
many CFD codes in industrial and
academic circles which use the
SIMPLE algorithm, or offer it as an
option. 

Patankar’s algorithm, and indeed
the wider research group led by
Spalding, benefited significantly
from the pioneering work on
numerical methods for fluid flow
undertaken by Frank Harlow and
colleagues at Los Alamos, as
outlined in Benchmark – April 2010.
However, it was Patankar’s insight in
developing the SIMPLE algorithm
that allowed the full potential of the
early Los Alamos work to be realised
- in the form of a practical solution
method applicable to a very wide
range of flows. 

In 1973, Patankar joined the
University of Waterloo in Canada for
two years, and then in 1975
became a faculty member of the
University of Minnesota in the
Department of Mechanical
Engineering, where he continues his
research and teaching, as Professor
Emeritus. He is President and
founder, in 1987, of Innovative
Research, Inc., a company providing
application-specific software
products and consulting services for
fluid flow, heat transfer and related
processes. He has won numerous
awards for teaching and research,
including, in 2008, the prestigious
Max Jacob Memorial Award from
the ASME.

Prof. Suhas Patankar has had a
lasting influence on generations of
fluid dynamicists. I would urge all
those using CFD software to read
his 1980 book. Even though some
of its methods have been
superseded, it nevertheless provides
easily understood insights into many
of the fundamentals of the
numerical modelling of fluid flows -
and which are equally applicable to
the present day. Patankar is truly an
‘Icon of CFD’. 

Icons of CFD continues in the next issue of
Benchmark, stepping back in time to the days
of CFD before computers, profiling Lewis Fry
Richardson, whose research in the early part
of the 20th Century has had a lasting impact.


