OPENING OF CONFERENCE

PLENARY SESSION

The National Digital Twin

KEYNOTE SPEAKER: Mark Enzer, Mott MacDonald

1A - OPTIMISATION

Using Optimisation in the Design of the RWUAS Air Vehicle Structure

INVITED PRESENTER: Gordon Mackenzie, Leonardo Helicopters

Rapid Stochastic Broadband Acoustics on GPUs

Mark Allan, Zenotech Ltd

Automated Shape Optimization Technology Coupled with Upfront CFD

Sean Horgan, 80/20 Engineering Ltd

1B - ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

Torsional Stiffness Simulation of Metallic Disc Membrane Couplings Considering Pre-Stretch and Post-Buckling Behaviour

Murat Islam, John Crane UK Ltd.

The Development of Machine Learning Tools to Automate and Improve on the Identification of Invasive Non-native Species and Help Keep Boots off Ballast

Sam Ahdab, Mott MacDonald

1C - COMPUTATIONAL TRIBOLOGY 1

Recent Developments in Modelling Techniques to Study Surface Interactions in Tribology

INVITED PRESENTER: Daniele Dini, Imperial College London

Optimization of Piston-Cylinder Liner Conjunction Micro-Geometry for Enhanced Tribo-Dynamic Performance

Stephen Bewsher, AVL List GmbH

Utilising Computational Tribology to Realise Multi-Scale Behaviour of Thin Solid Films

Robin Hildyard, Loughborough University

1D - INTRODUCTION TO THE ESSENTIALS OF SPDM

This short taster training course will include an introduction to SPDM based on 20 years of production experience for engineers currently not using an SPDM solution. It will cover SPDM project successes, the core technology of SDM and SPDM, the different classes of solutions available, how SPDM fits with other engineering systems and the value obtainable from SPDM, including functional Digital Twins.

Mark Norris, the SDM Consultancy

1E - CRACKING THE CRUSH TUBE:

A NONLINEAR LARGE DEFORMATION PROBLEM

The NAFEMS Computational Structural Mechanics Working Group

The Computational Structural Mechanics Working Group invites you to learn about the many ways of modelling a crush tube. A challenge problem, available from the NAFEMS website, has been posed and this session will act as a forum for respondents to discuss their solution and why they made the choices that led to it. A summary of all received submissions will also be presented.
DAY 1 - AFTERNOON SESSION

PLENARY SESSION

Saving the Russian Mir Space Station: The Role of Computerised Simulation
KEYNOTE PRESENTER: Michael Foale CBE, British-American Astrophysicist & Former NASA Astronaut

REFRESHMENT BREAK

2A - COMPOSITES

European Materials Modelling Council
INVITED PRESENTER: Gerhard Goldbeck, Goldbeck Consulting

- Deep-learning Based Distortion Prediction in Composites Processing
 Shuang Yan, University of Nottingham

- Supporting Innovative Composite Technologies
 Andrew Main, MSC software UK Ltd

- Multiscale Modelling of Random and Hybrid Discontinuous Tow Based Composites
 Rizwan Choudhury, University of Derby

2B - ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

- Development of a Real-time Engine Temperature Monitoring System, Using AI Based on Accurate and Validated Thermal Simulation Data
 Andrew MacLean, Maya HTT UK Ltd

- Increase CAE Productivity Levels Utilizing Machine Learning
 Signe Stenseth, Open IT

- Machine Learning for Satellite Mission Planning Using Weather Data
 Christos Constantiou, The Centre for Modelling & Simulation (CFMS)

- Artificially Intelligent Segmentation of a Shock Absorber X-ray CT Scan and Beyond
 Emmanuela Baksiova, BETA CAE Systems UK Ltd

2C - SHEET METAL FORMABILITY – MATERIAL PROPERTIES, FAILURE AND SIMULATION

This workshop is intended to assist all those involved in the design of sheet metal components to identify the key material properties and potential failure modes during manufacture. The session will demonstrate how CAE methods can be used to simulate the manufacturing method in order to identify any potential problems with the process and establish if part design changes are required.

WORKSHOP TOPICS – PART 1:
- Introduction to sheet metal forming processes
- Characterisation of sheet metal material properties for use in simulation
- Definition of process failure simulations

2D - OPEN DISCUSSION

VERIFICATION AND VALIDATION, SPECIFICALLY FOCUSSING ON CODE VERIFICATION
- Recap – what is verification and validation (based around the NAFEMS/ASME V&V diagram)
- SGMWG/CFDWG
- Code verification (current practice, best practice)
- SGMWG/CFDWG
- Discussion

2E - UNCERTAINTY QUANTIFICATION 1

- Stochastic Topology Optimization For Robust And Reusable Designs
 Johannes Neumann, Rafinex SARL

- Dealing with Uncertainty with Confidence
 Edoardo Patelli, University of Strathclyde

- Model Reduction and Uncertainty Quantification for Weld Simulations on Ferritic Materials
 Jefri Draup, EDF Energy R&D

- Uncertainty in Simulation and Test
 Jack Reijmers, Nevesbu

3A - ELECTROMAGNETICS

- Motor Design Optimisation Including Electromagnetic Performance and Mechanical Stress
 Tamara Monti, Dassault Systemes UK Ltd

- 3D Electromagnetic Eddy-Current Problems within the Finite Element Framework of Computing Platform Fenics
 Nunzio Palumbo, Relis Royce plc

3B - INFRASTRUCTURE

- Innovation Through Simulation in Built Environment
 Ganga Kasi, Sir Robert McAlpine Ltd

- Innovative Techniques for Bridge Assessment
 Ricardo Teixeira, Mott MacDonald

3C - SHEET METAL FORMABILITY – MATERIAL PROPERTIES, FAILURE AND SIMULATION

WORKSHOP TOPICS – PART 2:
- Discussion of the different materials used in sheet metal forming
- Description of how materials are tested to establish the required material parameters
- Application of simulation with an example using the Forming Limit Test

3D - FROM GRAINS TO PROPERTIES

CALCULATING BULK SCALE BEHAVIOUR FROM MICROSTRUCTURES
- Computational Structural Mechanics Working Group

- Modern engineering uses material design to obtain advantageous properties for challenging applications. This material design is underpinned by advanced simulation methods that use knowledge of the microstructure of the materials to predict the bulk-scale material response. This session will focus on one such technique, crystal plasticity finite element analysis, and will serve as an introduction to what it does and how it can be used.

3E - UNCERTAINTY QUANTIFICATION 2

- Effective Quadratures: Empowering Engineers with Open Source Computational Methodologies
 Pranay Seshadri, The Alan Turing Institute

- Supporting the Design of Composite Components using Multi-physics Simulations
 Olivia Stodieck, Daptablade Ltd.

END OF DAY 1
DAY 2 - MORNING SESSION

PLENARY SESSION

Climate Change – How Can Climate Models Help us to Respond?
KEYNOTE SPEAKER: Vicky Pope, Met Office

Innovation through Engineering Simulation - A Rolls-Royce Perspective
INVITED PRESENTER: Akin Keskin, Rolls Royce

SHORT BREAK

4A - ADDITIVE MANUFACTURING

Rapid 3D Inspection of AM Components Using CT: From Defect Detection to Thermal Performance Simulation
Celia Butler, Synopsys

Structural Simulation of Components with Defects - A Workflow from Computed Tomography to Finite Element Simulation
Beate Lauterbach, Volume Graphics GmbH

REFRESHMENT BREAK

4B - CFD 1

High-Fidelity CFD the Automotive and Motorsport Sectors in The Cloud
INVITED PRESENTER:
Neil Ashton, Amazon Web Services

Neeraj Cherukunnath, Rolls Royce Plc

4C - COMPUTATIONAL TRIBOLOGY 2

Multi-body Based Multi-physics Approaches to Simulate Modern Powertrain Tribodynamic Challenges
INVITED PRESENTER:
Günter Offner, Loughborough University & AVL List GmbH

Tribodynamic Modelling of High-speed Rolling Element Bearings Using Experimentally Obtained Boundary Conditions
Harry Questa, Loughborough University

5A - MANUFACTURING PROCESS

Finite Element Simulation of the Braiding Process
Melodie Cueto Carrion, National Composites Centre

Understanding the Manufacturing Cost Drivers of Tolerances
Amanda Bligh, aPriori Technologies

Understanding Powder Behaviour in an Additive Manufacturing Process by Using DEM
Marina Sousani, DEM Solutions Ltd

Manufacturing Process Chain Model in Composites Manufacturing
Melodie Cueto Carrion, National Composites Centre

5B - CFD 2

Using Fluid Dynamics for Simulating Exterior Ballistics Phenomena
Véronique de Brie, Royal Military Academy

Employing Advanced CFD to Predict Oil Distribution, Churning Losses and Gearbox Cooling
David Percival, EnginSoft UK Limited

Numerical and Experimental Evaluation of Tile Stoves Mode of Operation
Florian Schüssler, ACAM Engineering GmbH

Increasing Product Reliability with Reduced Order Models
John Parry, Mentor Graphics Corp.

5C - WHAT ARE THE CHANCES OF THE SHIP SNAPPING? CONSIDERATIONS WHEN USING PROBABILISTIC ANALYSIS

In the April 2019 issue of NAFEMS BENCHMARK magazine, two challenge problems are presented. The first one consists of two normal distributions, producing an analytical (theoretical) solution. The second one contains several distributions (normal, uniform and lognormal), and therefore an exact solution is not available. At the NAFEMS World Congress 2019 these problems were discussed and a few solutions were presented. In this special session at the UK Conference, these solutions and additional ones will be deliberated in combination with the theoretical background and the pitfalls of these methods.

LUNCH