Test-Model Correlation of Dry-Friction Damping Phenomena in Aero-Engines

Pierrick JEAN

« Ce document et les informations qu'il contient sont la propriété de Snecma. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Snecma. ».

Nafems 08/06/11

0/15

- **1- Industrial context**
- 2- The approach used for dry friction damping
- **3- Experimental results**
- **4- Simulation methods**
- **5- Numerical results**

« Ce document et les informations qu'il contient sont la propriété de Snecma. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Snecma. ».

1 Industrial context (1/2)

- Context : bladed disks design
 - Agressive aerodynamic profiles : lower flutter margins, higher aerodynamic loads
 - Prevention HCF risks
- To predict better bladed disks vibration levels
 - Aerodynamic loads prediction
 - Damping prediction => availibility of non-linear numerical tools
 - Calibrated, with a good level of confidence
 - Easy to use
 - Calculation time compatible with design cycles

To design additional damping solutions

« Ce document et les informations qu'il contient sont la propriété de Snecma. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Snecma. ».

IIIIII 1- Industrial context (2/2) – R&T on damping at Snecma

Natural damping

- Material damping
 - Metallic materials
 - Composite materials
- Friction interfaces
 - Dovetail joints —
 - Shrouds
 - Inter-stage links
- Aeroelastic damping

Intentional damping

- Dry-friction
 - Rim dampers
 - Under-platform friction dampers : wedge, thin-wall damper ____
- Constrained viscoelastic layers
- Smart materials

« Ce document et les informations qu'il contient sont la propriété de Snecma. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Snecma. ».

2- Approach for dry friction simulations (1/2)

« Ce document et les informations qu'il contient sont la propriété de Snecma. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Snecma. ».

2- Approach for dry friction simulations (2/2)

Numerical tools based on HBM, industrialised from 3 PhD thesis tools

(DLFT : Dynamic Lagrangian Frequency Time)

« Ce document et les informations qu'il contient sont la propriété de Snecma. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Snecma. ».

3- Experimental results – tuning process

Holding jaw tests : tuning process

- 1st bending mode
- Additional tip mass
- Out Of Phase mode => efficiency of damper

« Ce document et les informations qu'il contient sont la propriété de Snecma. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Snecma. ».

3- Exp. results - Rotating tests / dovetail joint effect

3- Exp. results (3/3) - Rotating tests / damper effect

normalised frequency

« Ce document et les informations qu

Dovetail joint model

The goal is finally to calibrate the friction coefficient.

« Ce document et les informations qu'il contient sont la propriété de Snecma. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Snecma. ».

Simulation methods (2/2)

Friction Damper model

Blade-to-blade model

The goal is finally to calibrate the friction coefficient and the contact stiffness.

« Ce document et les informations qu'il contient sont la propriété de Snecma. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Snecma. ».

Simulation results (1/2)

« Ce document et les informations qu'il contient sont la propriété de Snecma. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Snecma. ».

Simulation results (2/2)

Work in progress & next steps (1/2)

Industrial applications

Objective : input for aeroelastic analyses (flutter & forced response)

Simulated dissipated energy over the regime

« Ce document et les informations qu'il contient sont la propriété de Snecma. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Snecma. ».

Work in progress & next steps (2/2)

- Extension of fretting/wear analysis against dynamic loads
- Extension of multi-point damper model
 - Industrialisation and evaluation of the method in progress

Contact zone observed in test => Limitation of single-point damper

Structure-like damper

« Ce document et les informations qu'il contient sont la propriété de Snecma. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Snecma. ».

Conclusion

2 dry-friction damping phenomena investigated

- Dovetail joint
- Thin-wall damper
- **Experiments to calibrate models over a wide range of conditions**
 - Bonded root => linear reference
 - Free root without damper
 - Bonded root with damper
- > 2 multi-harmonic balance approaches industrialised and tested
- The more nodes are retained in the model
 - the more physical is the model,
 - the less calibration factors needed,
 - the more robust the model.

« Ce document et les informations qu'il contient sont la propriété de Snecma. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Snecma. ».

Backup slide 1 : FRFs, damper configuration

Groupe SAFRAN

16/15