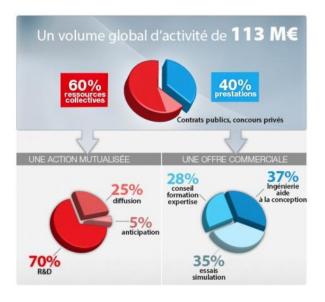
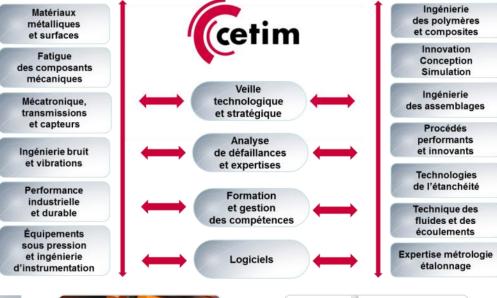

Simulation des systèmes

Modélisation 1D d'une machine textile et analyse de ses performances énergétiques


Antoine MICHON


Ingénieur Simulation Système

CETIM – Centre technique des industries mécaniques


CETIM – Centre technique des industries mécaniques

Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

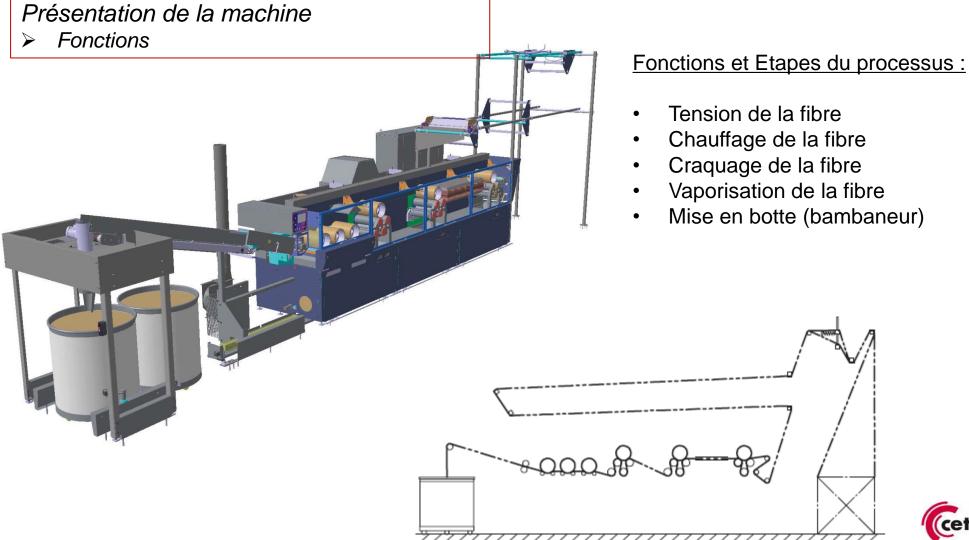
Sommaire

- ☐ Contexte et Objectif de l'étude
- Présentation de la machine étudiée
- Modélisation des composants et de la craqueuse
- ☐ Mesures sur Machine pour calibration du Modèle
- ☐ Simulations et Analyse Energétique

Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

Contexte et Objectifs de l'étude

Projet R&D interne CETIM


- ➤ Historique de la simulation système au CETIM : Projet APEEM (Amélioration des performances énergétiques des engins mobiles) de 2010 à 2014 ; Modélisation des engins mobiles / Analyses énergétiques / Profils de mission et Dimensionnement des composants de puissance
- Application aux machines textiles pour faire la promotion des méthodes et outils de simulation
- Complémentarité des pôles « performance industriel et durable » (analyse énergétique) et « mécatronique, transmissions et capteurs » (modélisation des systèmes de transmissions)

• Modélisation & Simulation des performances énergétiques d'une machine textile

- Modélisation de la chaine de transmission complète
- Vérifier et corréler le modèle à partir d'un nombre de mesures et d'essais limité
- Exploiter le modèle pour caractériser les performances de la machine
- Etudier l'impact des réglages et modes de fonctionnement de la machine
- Déterminer des « indices de performances » globaux pour les différents réglages machine
- Analyse des flux de puissance et des pertes dans la chaine de transmission

Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

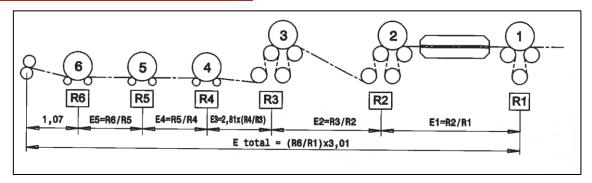
Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

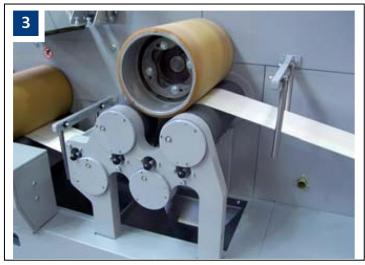
Présentation de la machine

Utilisation et paramètres de fonctionnement

4 grands paramètres de fonctionnement :

- Débit matière = Vitesse entre 0 et 400 m/min
- Mode de chauffe de la matière
- Résistance mécanique de la fibre
- Epaisseur du câble





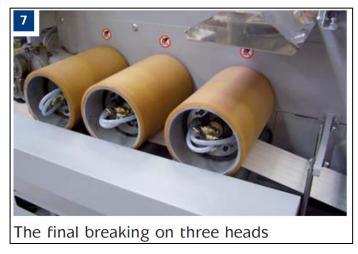
Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

Présentation de la machine

Composition

blocs de tension

plaques chauffantes


Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

Présentation de la machine

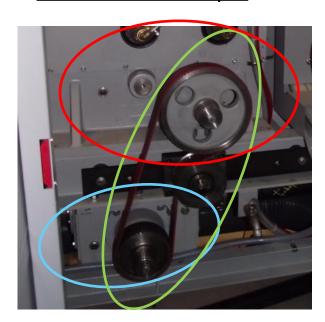
Composition

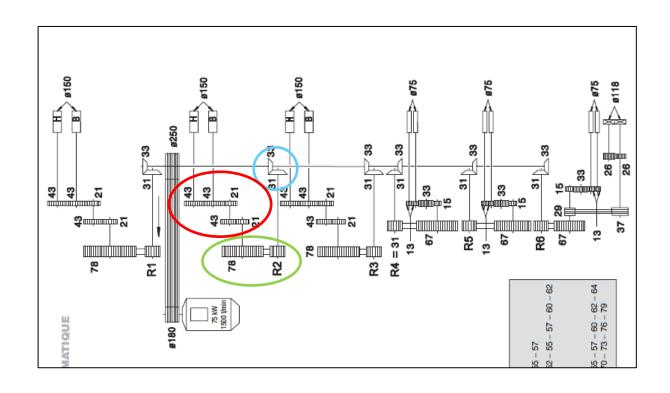
Les blocs de craquage avec cylindres d'entrainement, refroidis par circulation d'eau

Les rouleaux de pression, refroidis par eau

Boîte vapeur Tapis d'entrainement Bambanneur

Page 9 03/06/2015


Simulation des systèmes


Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

Présentation de la machine

Composition

Chaine cinématique

Renvoi d'angle

Poulie Courroie

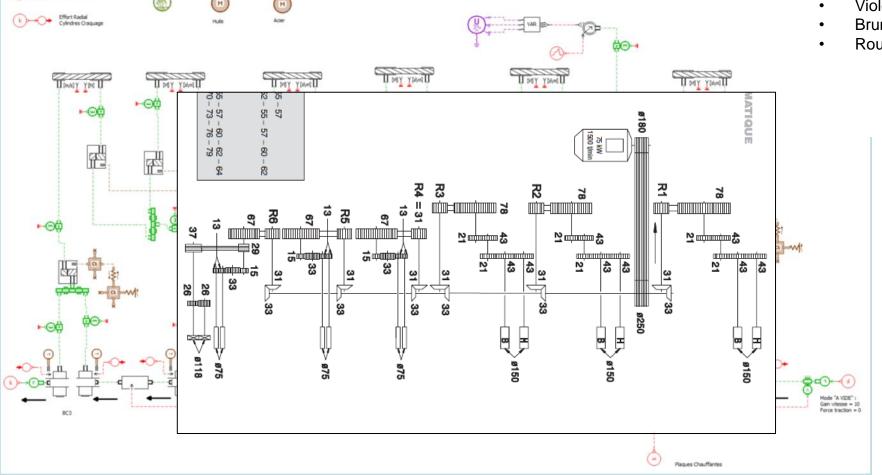
Bloc de transmission

Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

Modélisation de la machine

Vue d'ensemble

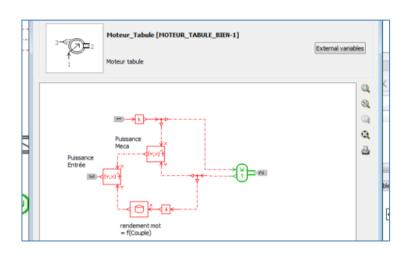
Logiciel : AMESim

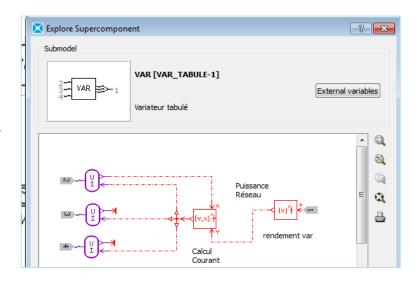

Modèle Multiphysique

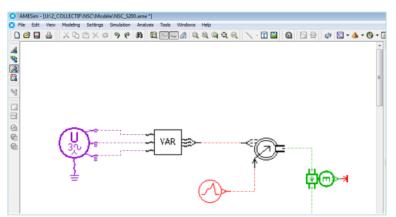
Vert : flux mécanique

Violet : flux électrique

Brun : flux thermique

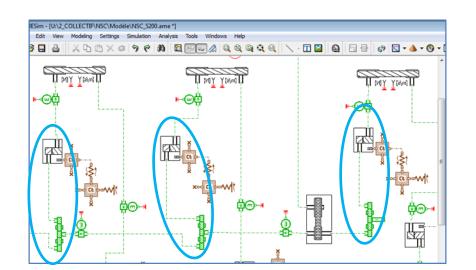

Rouge: signal

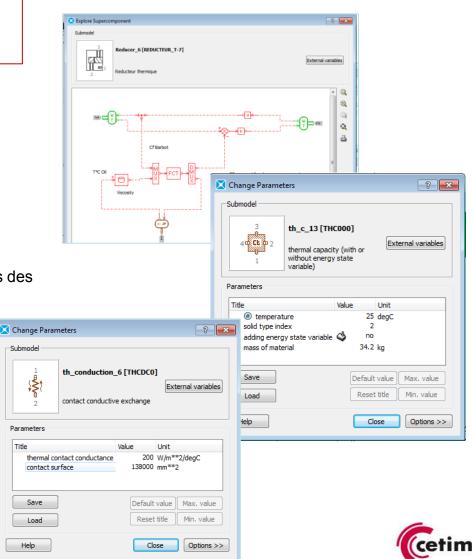




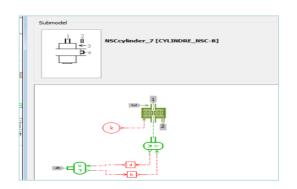
Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

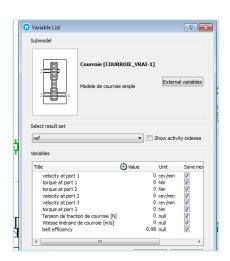
- Détail des composants : variateur et moteur
- Modélisation du moteur électrique :
 - Modèle tabulé : cartographie de pertes dans la plage couple / vitesse
 - Nature des pertes prises en compte : pertes joules au stator (connues par Rl²) / pertes joules au rotor (connues par le glissement), pertes fer (calées sur courbe rendement constructeur)
- Modélisation du variateur :
 - Modèle tabulé : rendement constant ou courbe de pertes fonction du courant
 - Pertes dans l'onduleur : pertes en conduction et pertes en commutation fonction de la fréquence de découpage
 - Calcul des courants consommés

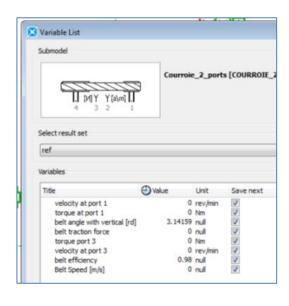




Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

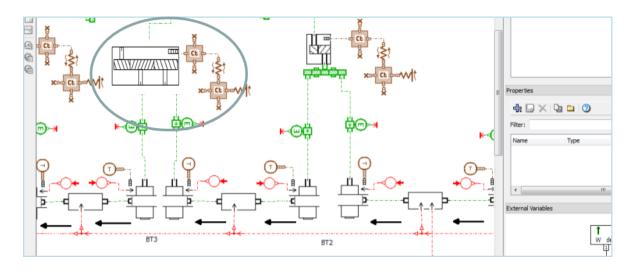

- Détail des composants : Renvois d'angle
- Modélisation des pertes mécaniques (ISO 14179-2) :
 - Pertes par brassage d'huile
 - Pertes par engrènement dépendantes de la charge
 - Pertes dans les roulements (formulation SKF)
- Modélisation thermique
 - Modélisation nodale simple : bain d'huile et carter
 - Conduction, convection et radiation : coefficient déterminés d'après la norme ISO 14179-2
 - Volume et surfaces d'échange estimées d'après dimensions des carters





Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

- Détail des composants : Courroies, Cylindres
- Modélisation des courroies :
 - Courroies profil trapézoïdale XPZ (moteur) et AT10 (blocs)
 - Supercomposant paramétré par diamètres et rendement
 - Paramétrage d'un rendement constant ou tabulé sur la plage force transmise / vitesse
- Modélisation des cylindres d'entrainement du textile
 - Loi cinématique parfaite : pas de glissement
 - Pertes dans les roulements du cylindre selon formulation SKF
 - Perte de couple supplémentaire correspondant à l'entrainement des rouleaux de pression
 - Chargement radial causé par les cylindres de pression et l'effort tangentiel dans le câble textile

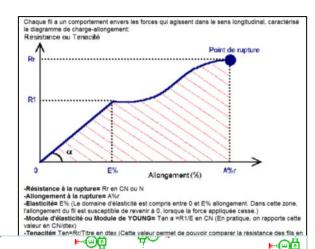


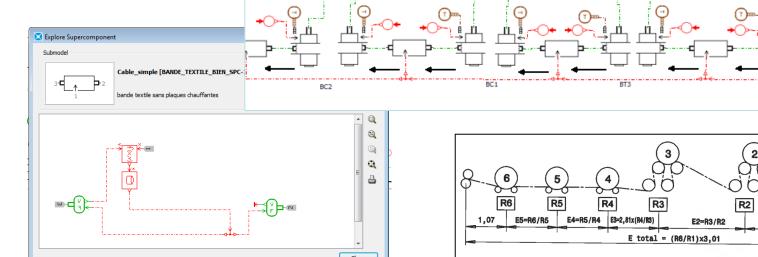
Projets de Modélisation Système

Machine NSC

- Détail des composants : Blocs de transmission
- Modélisation du bloc 1 pignon 2 couronnes :
 - Pertes par brassage d'huile
 - Pertes par engrènement dépendantes de la charge
 - Pertes dans les roulements (formulation SKF)
- Modélisation thermique
 - Modélisation nodale bain d'huile et carter
 - Conduction, convection et radiation : coefficient déterminés d'après la norme ISO 14179-2
 - Volume et surfaces d'échange estimées d'après dimensions des carters

Bloc Tension (3	Bloc Etirage (3		
exemplaires)	exemplaires)	Unité	Grandeur
1,86		(kJ/°K)/kg	Cpm_oil
11	2	L	Vol_oil
9,68	1,76	kg	M_oil
18,00	3,27	kJ/°K	Cp_oil
0,5		(kJ/°K)/kg	Cpm_ca
125,44	54,72	kg	M_ca
62,72	27,36	kJ/°K	Cp_ca


Bloc Tension (3	Bloc Etirage (3		
exemplaires)	exemplaires)	Unité	Grandeur
0,62	0,3	m	L
0,30	0,30	m	
0,65	0,42	m	Н
0,01	0,01	m	ер
200	200	$(W/^{\circ}K)/m^{2}$	α_oil
0,295	0,216	m²	A_oil
59,0	43,2	W/°K	Tr_oil
16	17	$(W/^{\circ}K)/m^{2}$	α_ca
1,568	0,684	m²	A_ca
25,3	11,3	W/°K	Tr_ca


Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

Modélisation de la machine

- Détail des composants : câble textile
- Modélisation du câble :
 - Réparti en plusieurs sous éléments entre les blocs
 - Modélisé par une caractéristique « tension-étirement »
 - Le modèle reçoit l'information de vitesse, calcule l'étirement et la tension, et renvoie les efforts aux extrémités
 - Caractéristiques des textiles obtenues par l'expérience métier de la société NSC + tests à la machine de traction
 - Représente la charge de la machine : paramètre clé du modèle pour estimer la consommation globale de la machine

E1=R2/R1

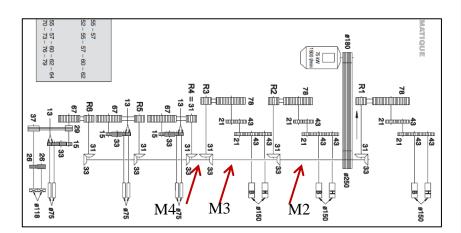
Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

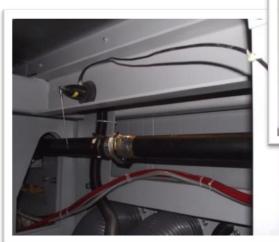
Mesures sur Machine pour calibration du modèle

- Calibration des pertes globales par un essai à vide (sans matière)
- Vérification du comportement du textile par quelques essais en charge
- Calcul de tension par méthode de la fréquence
- Mesure de la fréquence de battement
 - Capteur optique à grande résolution (1 micron)
 - Acquisition du signal à 2 kHz
- Post-traitement
 - Identification des fréquences parasites (faux-rond poulies)
 - Identification de la fréquence propre en post-traitement

Mesure de la puissance électrique, des tensions et courants en charge

f = fréquence de vibration (Hz)


- Général / Plaques chauffantes / Variateur principal
- Mesure de la vitesse moteur par bande réfléchissante
- Estimation du couple moteur et de la puissance mécanique (Estimation variateur + Estimation manuelle à partir du rendement et de la puissance électrique)


Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

Mesures sur Machine pour calibration du modèle Mesures de couple

- Instrumentation de 2 cardans et 1 accouplement
 - Collage de jauges de déformation en opposition
 - Jauges insérées dans un montage pont complet
 - Alimentation du pont par des piles fixées sur l'arbre
 - Mise en place d'un modulateur et d'une antenne émettrice
- Etalonnage des arbres sur banc de torsion
 - Application d'un couple étalon jusqu'à 600Nm
 - Identification de la droite de linéarisation
 - Ecarts résiduels inférieurs à 1 %/FS (1Nm / 3Nm / 5Nm)

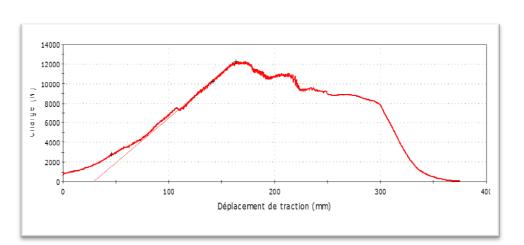
Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

Mesures sur Machine pour calibration du modèle :

Essai de traction de bande textile

Effort maximum atteints :

Fisipe Neochrome: 12 kN


Dralon L700 : 12 kNDralon L900 : 6 kN

Difficultés de l'essai

- Fixation aux extrémités par des nœuds : phénomènes de glissement
- Tension non homogène des fibres au sein du câble : câble moins résistant

Conclusions

- Tension maximale de câble plus faible que sur Machine textile
- Donnée d'allongement peu exploitable

Page 19 03/06/2015

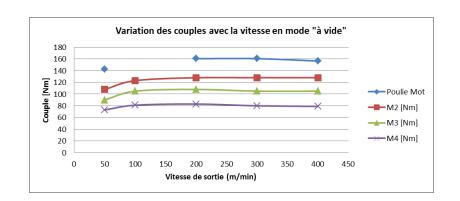
Simulation des systèmes

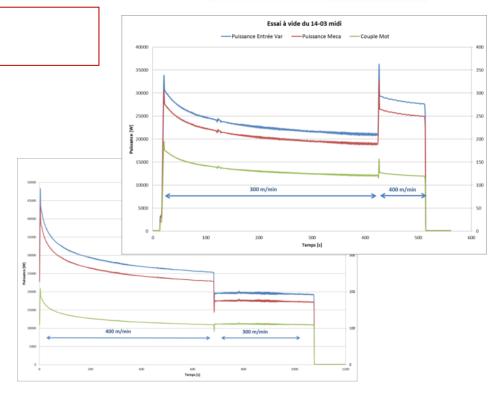
Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

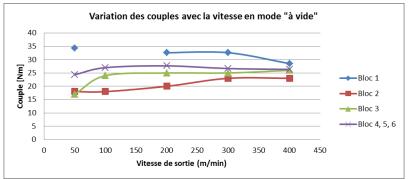
Mesures sur Machine pour calibration du modèle

Essai à vide : mise en évidence des pertes

Mesures électriques :


- Mesure de la puissance variateur du moteur principal
- Estimation du couple moteur connaissant la vitesse de rotation et les rendements moteur et variateur


Mesures de couple :


- Effet de mise en chauffe : atténuation asymptotique des couples dans le temps
- Faible influence de la vitesse sur les pertes en régime permanent
- Détermination des pertes par bloc : environ 25 Nm par bloc sur l'arbre transversal

Mesures de tension de courroie :

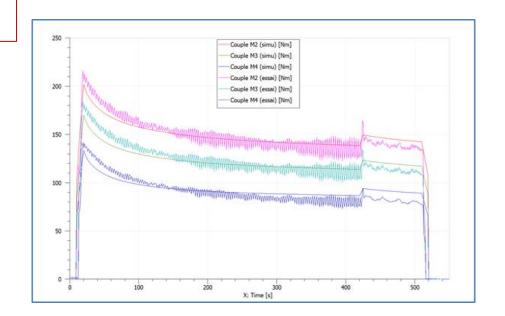
- Identification des pertes dans les blocs de transmission (après les renvois d'angle)
- Incertitude de mesure élevée pour les essais à vide

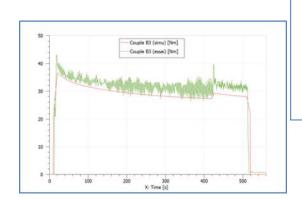
Page 20 03/06/2015

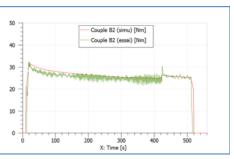
Simulation des systèmes

Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

Mesures sur Machine pour calibration du modèle


Essai à vide : mise en évidence des pertes


Comparaison essai-simulation :


- Comparaison des mesures de couple après stabilisation thermique, pour différents paliers de vitesse
- Comparaison du comportement transitoire thermique ; Mise en chauffe à 300 m/min puis 400 m/min

Observations:

- Sous-estimation notable des pertes à vide avec le modèle initial
- Correction effectuée sur les pertes par brassage des roues dentées et sur les pertes des roulements
- Après corrélation, reproduction correcte des pertes en régime permanent
- Ajustement des coefficient d'échange convectifs des carters pour reproduire le comportement thermique lors de la mise en chauffe
- Difficulté : pas de mesure de Température d'huile et carter

Page 21 03/06/2015

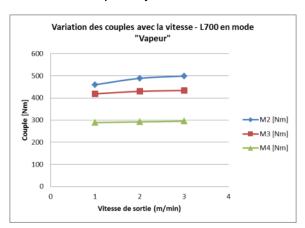
Simulation des systèmes

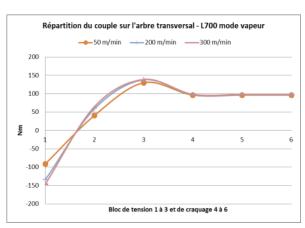
Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

Mesures sur Machine pour calibration du modèle

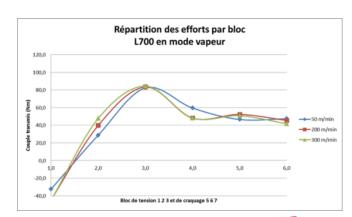
Essai en charge : vérification du comportement en traction du textile

Mesures de couple :

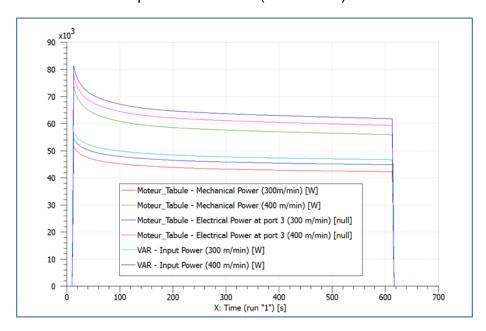

- Forte influence de la charge textile sur les couples mesurés
- Faible influence de la vitesse sur les couples mesurés
- Mode Vapeur / Plaques chauffantes : Le couple M2 est faible en mode « plaques chauffantes »

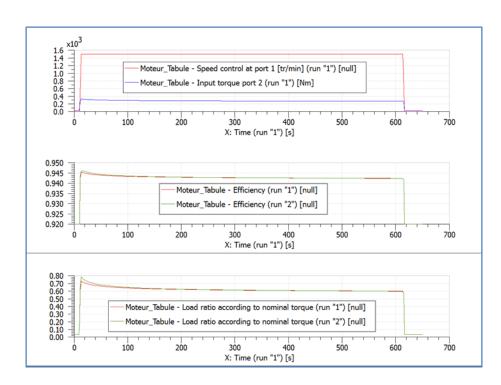

Mesures de tension de courroie :

- Calcul de la tension des courroies puis de l'effort transmis dans les 6 blocs
- Estimations complémentaires aux 3 mesures de couple
- Incertitude de mesure élevée (85 N) soit 8% à 20% de la mesure


Essais en charge pour 3 textiles :

- Ecarts initiaux Simulations / Mesures : sous-estimation globale des couples
- Ajustement dans le modèle des caractéristiques Effort / Allongement des textiles
- Après ajustement, erreurs résiduelles Simulations / Mesures de 5%

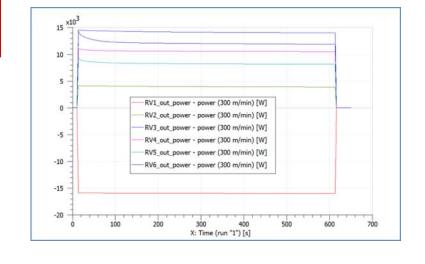


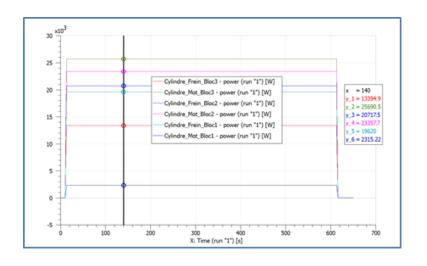


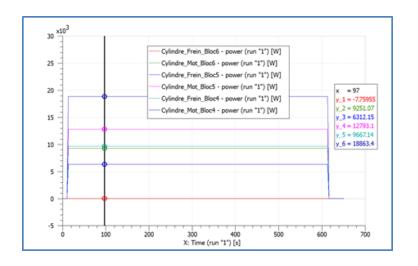
Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

Simulations et Analyse énergétique

- Fonctionnement en charge : L700 Vapeur
- Exemple de simulation pour du L700 mode Vapeur
 - Fonctionnement pour 2 vitesses : 300 m/min et 400 m/min
 - Grandeurs de fonctionnement du moteur principal (ci-contre)
 - Puissance moteur, variateur et puissance électrique intermédiaire (ci-dessous)

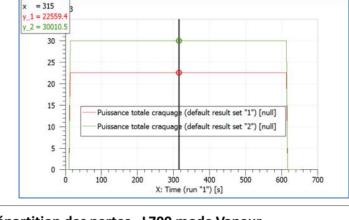


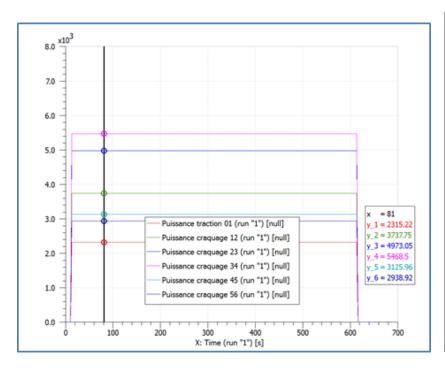


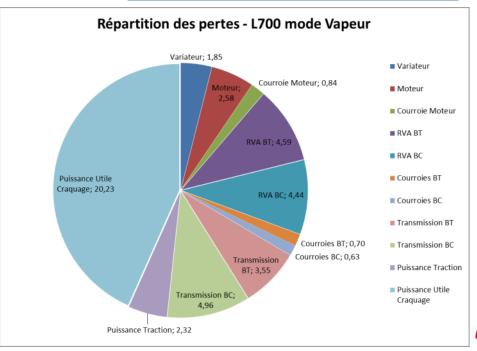

Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

Simulations et Analyse énergétique

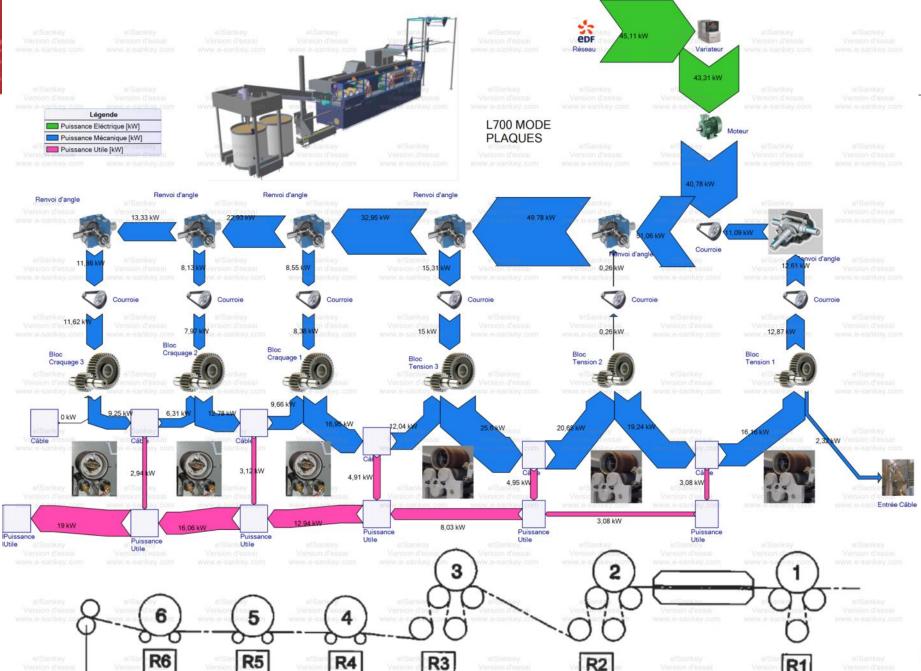
- Fonctionnement en charge : L700 Vapeur
- Distribution de la puissance entre les blocs au niveau de l'arbre transversal :
 - Fonctionnement à un débit matière de 300 m/min
 - Répartition de la puissance entre les blocs de tension et de craquage (ci-contre)
- Puissance transmise entre le textile et les cylindres :
 - Des blocs de tension (à gauche, blocs 1 à 3)
 - Des blocs de craquage (à droite, blocs 4 à 6)






Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

Résultats de simulation


- Fonctionnement en charge : L700 vapeur
- Puissance de craquage = puissance utile
 - Puissance de craquage totale à 300 m/min et 400 m/min : 22,60 kW et 30,01 kW (ci-contre)
 - Répartition de la puissance de craquage du câble dans les différentes zones inter-blocs (ci-dessous)

Modélisation 1D d'une machine textile et analyse de ses performances énergétiques

Simulations et Analyse énergétique

Exploitation du modèle

Simulation avec d'autres matières et réglages

- Simulation du fonctionnement avec 10 autres matières
- Etude des réglages de la machine : vitesse de production / mode de chauffe / réglages de poulies
- Détermination des indicateurs de performance : Rendement & Consommation spécifique v/s Vitesse de production et Type de matière textile

Bilan énergétique par diagramme de Sankey :

- Utilisation du logiciel E-Sankey (IFU Hamburg GmbH)
- Mise en évidence du cheminement de la puissance dans la chaine complète et des bouclages
- Mise en évidence des pertes et de la distribution de puissance entre les blocs
- Mise en évidence du fonctionnement « moteur » ou « générateur » des cylindres
- Mise en évidence des variations de fonctionnement selon les cas de charge : matière / mode de chauffe

