Failure Criteria in Fibre Reinforced Polymer Composites :

Can any of the Predictive Theories be Trusted ?

Prof Mike Hinton Technical Director, Weapons & Energetic Services & QinetiQ Senior Fellow, Advanced Composites +44 (0) 1959 514946 +44 (0) 1252 395978 E-mail: mjhinton@ginetig.com

Co-Workers:

Dr Sam Kaddour (QinetiQ, UK) Prof Paul Smith (Surrey University, UK) Dr Shuguang Li (Nottingham University, UK) Peter Soden (University of Manchester, UK)

NAFEMS World Congress, Boston, 23rd-26th May 2011

1.Background

2. The concept for the World-Wide Failure Exercises (WWFE)

- 3.The first WWFE (WWFE-I)
 - Scope
 - Results
 - Gaps
 - Conclusions
- 4.WWFE-II and WWFE-III
- 5. Closing Remarks

NAFEMS World Congress, Boston, 23rd-26th May 2011

1. Background

Cruciform Biaxial Test Rig

Cylindrical Biaxial Test Rig

NAFEMS World Congress, Boston, 23rd-26th May 2011

1. Background - 'Experts Meeting' held at St Albans (UK) in 1991

Title :-

'Failure of Polymeric Composites and Structures: Mechanisms and Criteria for the Prediction of Performance'

- Meeting organised by the UK Science & Engineering Research Council together with the UK Institution of Mechanical Engineers.
- Expert delegates invited from many countries.
- The meeting took the form of a series of formal presentations interspersed with informal discussion groups.

NAFEMS World Congress, Boston, 23rd-26th May 2011

1. **Background** - Major issues facing the composites community

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

1. Background - Key Findings from the 'Experts Meeting'

There is no universal definition for what constitutes 'failure'

of a composite structure.

None of the current predictive failure theories were considered to be credible for use in practical engineering applications.

NAFEMS World Congress, Boston, 23rd-26th May 2011

1. Background - Key Findings from the 'Experts Meeting'

There is no universal definition for what constitutes 'failure' of a composite structure.

One definition :-'Failure' is the point beyond which the structure or component ceases to fulfil its function.

Failure of liquid hydrogen composite tank grounded protoflight test of hypersonic vehicle (X33) (NASA)

NAFEMS World Congress, Boston, 23rd-26th May 2011

1. Background - Key Findings from the 'Experts Meeting'

None of the current predictive failure theories were considered to be credible for use in practical engineering applications.

A Grand Challenge:

How accurately can we predict the strength of an FRP laminate?

NAFEMS World Congress, Boston, 23rd-26th May 2011

Objective

• Establish a benchmark

Method

- Identify the leading failure theories for FRP laminates
- Test the general applicability of the theories across a range of problems
- Compare the theories against each other
- Compare the theories against experimental evidence
- Draw conclusions and recommend way forward

Closing the gap between the academic world and the design world

NAFEMS World Congress, Boston, 23rd-26th May 2011

- 1. What failure prediction theories are in use world-wide ?
- 2. How to ensure that 'authorised' versions of those theories are tested ?
- 3. How to ensure that a critical quantity of 'authorised' predictions are produced ?
- 4. What test problems do I pick to test the theories to their limits ?
- 5. Where do I get credible experimental data from ?
- 6. How do I ensure that those making the predictions use identical input data and provide output data (ie predictions) to a common format ?
- 7. How to maintain a level playing field
- 8. Which part of the elephant do I attack first?

NAFEMS World Congress, Boston, 23rd-26th May 2011

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

QinetiQ

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

3. WWFE-I - Issues Tackled

All test cases featured laminates assembled from continuous fibre reinforced unidirectional laminae subjected to 2D in-plane loading

- Use of micro-mechanics for prediction properties
- Prediction of the biaxial failure of a lamina in isolation
- Prediction of 2D modes of failure
- Prediction of the biaxial failure envelopes for a variety of laminates
- Matrix failure in tension, shear and compression
- Material non-linearity
- Post failure modelling under 2D stresses
- Prediction of fibre failure

NAFEMS World Congress, Boston, 23rd-26th May 2011

Contributor(s)	Organisation	Approach represented	Theory
			Designation
Chamis C C	NASA Lewis	1) ICAN	Chamis (1)
Gotsis P K	Cleveland	2) CODSTRAN	Chamis (2)
Minnetyan L	USA	(micromechanics analyses)	
Eckold G C	AEA Technology Harwell UK	British Standard pressure vessel design codes	Eckold
Edge E C	British Aerospace Military Aircraft Division Warton UK	British Aerospace In-house design method	Edge
Hart-Smith L J	Douglas Products Division Longbeach USA	 Generalised Tresca theory Maximum strain theory 	Hart-Smith (1) Hart-Smith (2)

NAFEMS World Congress, Boston, 23rd-26th May 2011

Contributor(s)	Organisation	Approach represented	Theory
			Designation
McCartney L N	National Physical Laboratory	Physically based 'Damage	McCartney
	London	Mechanics'	
	UK		
Puck A	Technische Hochchule	Physically based 3-D	Puck
Schürmann H	Darmstadt	phenomenological models	
	Germany		
Rotem A	Faculty of Mechanical Engineering,	Interactive matrix and fibre	Rotem
	Technion-Israel Institute of Technology	failure theory	
	Haifa		
	Israel		
Sun C T	Purdue University	Linear and non-linear analysis	Sun
Тао Ј Х	School of Aeronautics & Astronautics	(non-linear is FE based)	
	Indiana		
	USA		

NAFEMS World Congress, Boston, 23rd-26th May 2011

Contributor(s)	Organisation	Approach represented	Theory
			Designation
Tsai S W	Aeronautics and Astronautics Dept	Interactive progressive quadratic	Tsai
Liu K-S	Stanford University	failure criterion	
	California		
	USA		
Wolfe W E	Department of Civil Engineering	Maximum strain energy method,	Wolfe
Butalia T S	Ohio State University	due to Sandhu	
	Ohio		
	USA		
Zinoviev P	Institute of Composite Technologies	Development of Maximum	Zinoviev
Grigoriev S V	Orevo	stress theory	
Labedeva O V	Moskovkaya		
Tairova L R	Russia		

NAFEMS World Congress, Boston, 23rd-26th May 2011

Contributor(s)/	Organisation	Approach represented	Theory Designation
L J Hart-Smith	Boeing, USA	10% rule theory	Hart-Smith (3)
R Cuntze and A Freund	MAN Technologies Germany	Failure Mode Concept (Puck+ probabilistics)	Cuntze
T Bogetti , C Hoppel , V Harik , J Newill , B Burns	U.S. Army Research Laboratory;	Maximum strain theory (3-D formulation)	Bogetti
S J Mayes and A C Hansen	Naval Surface Warfare Center, West Bethesda Alfred University	Multi-continuum theory (Micro-mechanics based FE theory)	Mayes
Z-M Huang	Tongi University, Shanghai, China	Bridging model (Micromechanics+plasticity)	Huang

NAFEMS World Congress, Boston, 23rd-26th May 2011

3. WWFE-I - Test Cases for laminates and loading

NAFEMS World Congress, Boston, 23rd-26th May 2011

3. WWFE-I - Test Case 12 -- (0/90)_s GRP, Uniaxial Tensile Loading

Schematic of the loading configuration of a (0/90)s cross ply laminate.

Note that the thickness of the laminate is 1.04 mm, h1 = 0.52 mm and h2 = 0.26 mm.

NAFEMS World Congress, Boston, 23rd-26th May 2011

3. WWFE-I - Test Case 12 -- (0/90)_s GRP, Uniaxial Tensile Loading

Crack development

Crack density versus strain

Test Case 12:

(0/90) GRP laminate under tension

Majority predicted only 2 modes?

Only 2 theories predicting crack density

NAFEMS World Congress, Boston, 23rd-26th May 2011

Biaxial Envelope & Stress / Strain Curves at (1y:0x) and (2y:1x) Ratio

Schematic of the loading configuration and lay-up of a ±55 angle ply laminate.

Note: the thickness of the laminate is 1 mm where h = 0.25 mm.

NAFEMS World Congress, Boston, 23rd-26th May 2011

Biaxial Envelope & Stress / Strain Curves at (1y:0x) and (2y:1x) Ratio

PROPERTY	VALUE
E1 (GPa)	45.6
E₂ (GPa)	16.2
G ₁₂ (GPa)	5.83*
V ₁₂	0.278
V ₂₃	0.4
$G_{1C}(Jm^2)$	165
$\alpha_1 (10^6 \ ^{\circ}C^1)$	8.6
$\alpha_2 (10^6 \ ^{\circ}C^1)$	26.4
Stress Free Temperature (°C)	120

Properties of the E Glass / Epoxy

System

±55°Lay up and Loading

Configuration NAFEMS World Congress, Boston, 23rd-26th May 2011

Biaxial Envelope & Stress / Strain Curves at (1y:0x) and (2y:1x) Ratio

Test Facilities for generating Biaxial Failure Envelopes

Biaxial Compression Test Rig

QinetiQ

Flament wound tube Rubber liver (Louge Length Scale mm

End fitting for biaxial tension test

Aluminium innec pric

17 ÷ 1

Aluminium outer ori

Specimen and reinforcement

Uniaxial Hoop Tension Test Rig

NAFEMS World Congress, Boston, 23rd-26th May 2011

© Copyright QinetiQ Limited 2011

Oil Supply

Θ

Glass/Epoxy ±55° Biaxial Test Specimens

NAFEMS World Congress, Boston, 23rd-26th May 2011

Glass/Epoxy ±55° Biaxial Test Specimens

SR 1.58/1 1.714/1 1.98/1 2/1 2.5/1

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

Glass/Epoxy ±55° Biaxial Test Specimens

SR 3/1 3.31/1 3.5/1 5.5/1 10.1

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

Glass/Epoxy ±55° Biaxial Compression Test Specimens

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

Experimental Procedure and Results

FEATURE	FAILURE STRESS o _v (MPa)							
Stress Ratio (_{Ox} / _{Oy})	1/0	2/1	-2/-1					
Leakage Failure	386	280	None					
Catastrophic Failure	595	736	-792					

Tests were performed on both virgin and lined tubes

'Initial' failure was characterised by weeping of the test liquid through the tube wall

'Final' failure was signified by catastrophic rupture

• sometimes prefaced by significant damage and deformation well before the end point

NAFEMS World Congress, Boston, 23rd-26th May 2011

3. WWFE-I - Test Case 9 - Failure Envelope for ±55° GRP Laminate (1)

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

© Copyright QinetiQ Limited 2011

30

3. WWFE-I - Test Case 9 - Failure Envelope for ±55° GRP Laminate (1)

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

3. WWFE-I - Test Case 9 - Failure Envelope for ±55° GRP Laminate (1)

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

32

3. WWFE-I - Criteria used for ranking the WWFE theories (1)

Criterion 1:	Predicting the biaxial strength of a UD composite
	to within 10% of the experimental value

- **Criterion 2:** Predicting the biaxial strength of multi-directional laminates to within 10% of the experimental value
- Criterion 3: Predicting the deformation of multi-directional laminates to within 10% of the experimental value
- **Criterion 4:** Predicting the general features exhibited in the experimental results

NAFEMS World Congress, Boston, 23rd-26th May 2011

Accuracy within ± (>10<50)%

Accuracy greater than ± 50%

Predicting the Biaxial Strength of a Unidirectional Composite

CHAMIS-2	ECKOLD	EDGE	HART-SMITH1	HART-SMITH2	MCCARTENY	PUCK	ROTEM	SUN(L)	Sun(NL)	TSAI	WOLFE	ZINOVIEV	Stress-ratio	Test case
1	1	1	1	1		1	1	1		1	1	1	SR =1/0	0 LAMINA UNDER SHEAR+TRANSVERSE
1	l 1	1	1	1		1	1	1		1	1	1	SR =0/1	0 LAMINA UNDER SHEAR+TRANSVERSE
1	0.29	1	1	1		1	1	1		1	1	1	SR = -1/0	0 LAMINA UNDER SHEAR+TRANSVERSE
1.05	<mark>5</mark> 1.21	1.05	1.05	1.05			1.05	1.05		0.96		1.21	SR =0.35/1	0 LAMINA UNDER SHEAR+TRANSVERSE
0.6	6 0.55	0.63	0.63	0.63			0.6	0.6		0.76		0.63	SR =-0.73/1	0 LAMINA UNDER SHEAR+TRANSVERSE
1	<mark>1</mark>	1	1	1		1	1	1		1	1	1	SR =1/0	0 LAMINA UNDER SHEAR+LONGITUDINAL
1	l.	1	1	1		1	1	1		1	1	1	SR =-1/0	0 LAMINA UNDER SHEAR+LONGITUDINAL
1	l.	1	1	1		1	1	1		1	1	1	SR =0/1	0 LAMINA UNDER SHEAR+LONGITUDINAL
0.778	3	1.05	1.05	1.05		0.92	1.05	1.05		0.831	0.92	1.05	SR =20.7/1	0 LAMINA UNDER SHEAR+LONGITUDINAL
0.65	5	0.71	0.71	0.71		0.71	0.76	0.71		0.71	0.76	0.71	SR =7.2/1	0 LAMINA UNDER SHEAR+LONGITUDINAL
1.02	<mark>2</mark>	0.84	1.3	1.3		1.16	1.3	1.3		0.98	1.18	1.3	SR =-13.6/1	0 LAMINA UNDER SHEAR+LONGITUDINAL
0.87	0.67	1.13	1.05	0.84		1.1	1.125	1.125		0.955	0.77	1.125	SR =18.8/-1	0 LAMINA UNDER LONG. +TRANS.
0.9	0.45	1.54	1.36	0.845		1.34	1.2	1.54		0.99	0.88	1.54	SR =9.3/-1	0 LAMINA UNDER LONG. +TRANS.
0.91	0.33	1.2	1.2	0.84		1.17	1.08	1.195		0.96	0.95	1.195	SR =4.23/-1	0 LAMINA UNDER LONG. +TRANS.
1	1.6	1	1	0.505		1	1	1		1	0.45	1	SR =-1/0	0 LAMINA UNDER LONG. +TRANS.
1	1	1	1	1		1	1	1		1	0.83	1	SR =1:0	0 LAMINA UNDER LONG. +TRANS.
1	0.28	1	1	1		1	1	1		1	1	1	SR =0:-1	0 LAMINA UNDER LONG. +TRANS.

NAFEMS World Congress, Boston, 23rd-26th May 2011

Accuracy within ± 10 %

Accuracy within \pm (>10<50)%

Accuracy greater than ± 50%

Predicting the Ultimate Strength of Multidirectional Laminates

			ECKOLD	EDGE	HART-SMITH1	HART-SMITH2	McCartney	РИСК	ROTEM	SUN(L)	Sun(NL)	TSAI	WOLFE	ZINOVIEV	Stress Ratio	Test case
	1 0	.225		0.62	0.74	0.737	n	0.85	0.675	0.809	n	0.531	0.32	0.656	SR = -2.3/1	30/90 UNDER SHEAR+DIRECT STRESSES
	2 0	.393		1.01	1.08	3 1.08	<mark>8</mark> n	0.91	0.436	0.927	n	0.535	0.21	0.818	SR = 1/1	30/90 UNDER SHEAR+DIRECT STRESSES
	3 0	.336		0.83	3	l 0.974	n	1.11	0.449	0.967	n	0.613	0.38	0.914	SR = 0/1	30/90 UNDER SHEAR+DIRECT STRESSES
	4 0	.814	1.94	0.67	1.15	5 1.18	n	0.84	0.734	1.222	n	0.534	0.53	0.608	SR = -1/0	30/90 UNDER SHEAR+DIRECT STRESSES
	5 0	.371	1.16	0.6	0.89	9 0.89	n	0.9	0.528	0.733	n	0.444	0.45	0.87	SR = 1/0	30/90 UNDER SHEAR+DIRECT STRESSES
	6	0.41	1.09	1.34	1.43	3 1.43	<mark>8</mark> n	1.23	0.238	1.318	n	0.909	1.02	1.272	SR = 1/2.86	30/90 UNDER DIRECT STRESSES
	7 0	.183	1.03	1.2	2 1.43	<mark>3</mark> 1.53	3 n	1.06	0.55	1.06	n	0.55	0.43	0.916	SR = 1/-1.44	30/90 UNDER DIRECT STRESSES
	8	1.4	2.83	1.69	2.25	5 2.25	5 n	1.84	1.81	2.11	n	1.71	1.88	1.2	SR = -1/-2.3	30/90 UNDER DIRECT STRESSES
	9 0	.808	0.59	0.84	1.31	1.342	2 n	0.91	0.194	0.963	n	0.883	0.19	0.937	SR = 1/1	30/90 UNDER DIRECT STRESSES
	10 0	.842	1.75	1.82	1.35	5 1.35	<mark>n</mark>	2.06	1.69	1.771	n	1.49	1.07	1.824	SR = -1/0	30/90 UNDER DIRECT STRESSES
	11	0.67	0.69	0.78	1.09	9 1.04	n	0.78	0.672	0.938	n	0.765	0.45	0.814	SR = 1/0	30/90 UNDER DIRECT STRESSES
	12			1.61	1.59	1.506	<mark>i</mark> n	1.56	1.641	1.614	n	1.401	1.24	1.614	SR = -1/0	0/90/45 UNDER DIRECT STRESSES
	13			1.49	1.31	1.463	<mark>8</mark> n	1.49	1.034	1.358	n	0.928	0.59	1.534	SR = 1/-1	0/90/45 UNDER DIRECT STRESSES
	14		-	2.65	2.78	3 2.814	n	2.76	2.757	2.65	n	4.153	2.41	2.727	SR = -1/-1	0/90/45 UNDER DIRECT STRESSES
	15	0.9		0.9	0.92	2 0.939	<mark>)</mark>	0.97	0.373	0.98	0.98	0.875	0.82	0.963	SR = 2/1	0/90/45 UNDER DIRECT STRESSES
	16 0	.496		0.92	0.92	2 0.941		0.98	0.766	0.94	0.94	0.863	0.72	1.013	SR = 1/0	0/90/45 UNDER DIRECT STRESSES
	17	0.47	1.02	1.86	5 2.1	2.15	5	1	0.96	2.25	n	1.1	0.96	0.97	SR = 0/1	55 UNDER DIRECT STRESSES
	18	0.76	0.74	1.9	1.82	2 1.92	2	0.76	0.405	1.74	n	0.85	0.41	0.44	SR = 0.75/1	55 UNDER DIRECT STRESSES
	19	1.3	0.53	1.2	2.16	5 2.24		0.62	0.205	1.43	n	0.62	0.21	0.204	SR = 1.3/1	55 UNDER DIRECT STRESSES
	20 0	.292	0.79	0.48	0.53	3 0.544		0.64	0.163	0.886	n	0.65	0.19	0.91	SR = 3.3/1	55 UNDER DIRECT STRESSES
	21 0	.694	0.47	1.16	0.97	0.972	<mark>2</mark>	1.02	1.027	1.111	n	1.055	1.03	1.19	SR = 0/-1	55 UNDER DIRECT STRESSES
	22 0	.239	0.99	0.49	0.73	3 0.723		0.72	0.485	0.642	n	0.461	0.55	0.484	SR = -2/-1	55 UNDER DIRECT STRESSES
	23 1	.154	1.11	1.24	1.33	3 1.327	-	1.19	0.173	1.076	1.08	0.815	0.15	1.196	SR = 2/1	55 UNDER DIRECT STRESSES
	24	0.24	1.08	0.45	0.43	3 0.426	5	0.57	0.479	0.417	0.42	0.336	0.43	0.655	SR = 1/0	55 UNDER DIRECT STRESSES
L	25 1	.356	-	1.28			0.8	1.28	0.179	1.275	1.31	0.826	0.14	1.315	SR = 1/1	45 UNDER sr=1/1
	26 0	.539	0.61	3.17				0.78	0.924	0.771	0.78	0.771	0.77	0.952	SR = 1/-1	45 UNDER SR=1/-1
	27 1	.054		1.05			0.8	1.1	1.051	1.051	0.81	0.673	0.48	1.084	SR = 1/0	0/90 UNDER SR=1/0

NAFEMS World Congress, Boston, 23rd-26th May 2011

Accuracy within ± 10 %

Accuracy within \pm (>10<50)%

Accuracy greater than ± 50%

Predicting the Deformation (Failure Strain & Strain Ratios) of Multi-Directional Laminates

		CHAMIS-2	ECKOLD	EDGE	HART-SMITH1	HART-SMITH2	MCCARTENY	PUCK	ROTEM	SUN(L)	Sun(NL)	TSAI	WOLFE	ZINOVIEV	Stress-ratio	Test case
	1 (0.932		1.24				1.23	2.688	0.909	1.35	1.249	1.09	1.3	sr=1/0	AXIAL STRAIN FOR 55 GRP UNDER SR=1/0
	2	19.05		0.95				0.98	0.836	1	1.04	0.997	0.76	1.065	sr=1/0	HOOP STRAIN FOR 55 GRP UNDER SR=1/0
	3	1.199		1.02				0.98	2.505	0.706	1.01	0.779	1.08	0.951	sr=1/0	STRAIN RATIO FOR 55 GRP UNDER SR=1/0
	4	0.992		0.9				1.01		1.52	1.01	0.993	0.9	0.974	sr=2/1	AXIAL STRAIN FOR 55 GRP UNDER SR=2/1
	5	0.959		0.88				0.99	0.482	1.018	0.89	0.942	0.83	0.986	sr=2/1	HOOP STRAIN FOR 55 GRP UNDER SR=2/1
	6	0.965		0.97				0.98		0.668	1.1	0.949	0.97	1.011	sr=2/1	STRAIN RATIO FOR 55 GRP UNDER SR=2/1
	7 1	.41/0	0.06	1.34				0.41	0.198	0.122	0.2	0.08	0.21	0.378	sr=1/0	HOOP STRAIN FOR 0/90/45 CFRP UNDER SR=1/0
	8	-0.03		1.35				-0.3	-0.14	-0.056	-0.14	-0.04	-0.1	-0.302	sr=1/0	AXIAL STRAIN FOR 0/90/45 CFRP UNDER SR=1/0
	9	0.475	0.47	0.81				0.82	0.696	0.46	0.7	0.536	0.71	0.799	sr=1/0	STRAIN RATIO FOR 0/90/45 CFRP UNDER SR=1/0
	10	1.32	0.2	1.69				0.14	1.512	0.884	1.42	0.864	0.13	1.116	sr=2/1	HOOP STRAIN FOR 0/90/45 CFRP UNDER SR=2/1
-	11	0.306	0.12	-0.3				0.33	0.023	0.655	0.22	0.31	0.02	0.66	sr=2/1	AXIAL STRAIN FOR 0/90/45 CFRP UNDER SR=2/1
-	12	0.229		-0.17				0.23	0.143	0.736	0.15	0.359	0.15	0.596	sr=2/1	STRAIN RATIO FOR 0/90/45 CFRP UNDER SR=2/1
_	13	0.77	0.19	1.02			0.77	1.06	1.04	1.062	0.84	0.616	0.46	1.033	sr=1/0	AXIAL STRAIN FOR 0/90 GRP UNDER SR=1/0
_	14	2.404	0.8	1.63			1.26	0.2	6.232	-0.4	2.8	1.032	0.7	0.896	sr=1/0	TRANS. STRAIN FOR 0/90 GRP UNDER SR=1/0
	15	3.118	3.15	1.6			1.64	0.18	5.976	0.376	3.35	1.685	1.9	0.866	sr=1/0	POISSON'S RATIO FOR 0/90 GRP UNDER SR=1/0
•	16	6.743	0.2	1.13			0.6	1.16	0.091	1.131	1.31	0.712	0.09	1.123	sr=1/1	HOOP STRAIN FOR 45 GRP UNDER SR=1/1
•	17	7.663	0.23	1.29			0.68	1.32	0.103	1.285	1.49	0.809	0.1	1.276	sr=1/1	AXIAL STRAIN FOR 45 GRP UNDER SR=1/1
•	18	1.136	1.14	1.14			1.14	1.14	1.136	1.136	1.14	1.136	1.14	1.136	sr=1/1	STRAIN RATIO FOR 45 GRP UNDER SR=1/1
	19	-0.04	-0.04	1.34				-0.2	-0.15	-0.056	-0.18	-0.06	-0.2	-0.776	sr=1/-1	AXIAL STRAIN FOR 45 GRP UNDER SR=1/-1
2	20	0.044	0.05	1.52				0.27	0.159	0.064	0.2	0.064	0.2	0.82	sr=1/-1	HOOP STRAIN FOR 45 GRP UNDER SR=1/-1

NAFEMS World Congress, Boston, 23rd-26th May 2011

Accuracy within ± 10 %

Accuracy within ± (>10<50)%

Accuracy greater than ± 50%

Predicting the Initial Failure in Multi-Directional Laminates

NO	CHAMIS-2	ECKOLD	EDGE	HART-SMITH1	HART-SMITH2	MCCARTENY	РИСК	ROTEM	SUN(L)	Sun(NL)	TSAI	WOLFE	ZINOVIEV	Test Case No.	Test case
1	0.97	0.98	0.93			0.97	1.01	1.09	0.97	0.97	1.04	0.98	0.97	12	Initial modulus or slope for 0/90 grp under SR =1/0
2	1.14	1.08	0.98			1.07	1.39	1.42	1.13	1.07	1.35	1.01	1.08	12	Poisson's Ratio for 0/90 grp under SR =1/0
3		1.32	0.45			1.05	0.47	0.6	0.8	0.66	0.81	0.65	0.66	12	Failure stress of 0/90 grp under SR =1/0
4		1.33	0.46			1.05	0.46	0.54	0.693	0.66	0.757	0.67	0.66	12	Failure strain in loading direction for 0/90 grp
5		3.03	0.92			1.67	0.82	1	1.14		1.417	1.17	1.14	13	Failure stress at initial cracking for 45 grp under SR =1/1
6	0.038		0.09				0.43	0.575	0.389		0.45	0.55	0.603	7	initial failure stress for 0/90/45 cfrp under SR =1/0
10	0.033		0.08				0.37	0.511	0.347		0.444	0.55	0.54	8	initial failure stress for 0/90/45 cfrp under SR =2/1
7	0.103	0.11	0.18				0.2	0.186	0.282		0.262	0.39	0.324	9	Unlined Failure stress for 55 grp at SR=5.5:1
8	0.095	0.16	0.14				0.16	0.163	0.251		0.272	0.25	0.248	9	Unlined Failure stress from 55 grp at SR=3:1
9	0.326	0.63	0.41				0.51	0.51	0.739		0.78	0.65	0.65	9	Unlined Failure stress for 55 grp at SR=0.75:1
11	0.308	0.17	0.69				0.85	0.534	0.642	0.65	0.518	0.66	0.516	10	Unlined Failure stress from 55 grp under SR =1/0
12	0.532	0.52	0.91				0.92	0.779	0.515	0.79	0.599	0.76	0.894	10	Poisson's ratio at leakage for 55grp under SR =1/0
13	-0.06	-0.06	-0.57				-0.8	-0.31	-0.126	-0.32	-0.1	-0.3	-0.68	10	Axial strain of unlined specimens from 55 grp under SR =1/0
14	0.112	0.11	0.63				0.83	0.4	0.245	0.4	0.165	0.42	0.761	10	Hoop strain of unlined specimens from 55 grp under SR =1/0
15	0.161	0.59	0.25				0.31	0.336	0.432	0.43	0.464	0.4	0.4	11	Unlined Failure stress from 55 grp under SR =2/1

NAFEMS World Congress, Boston, 23rd-26th May 2011

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

© Copyright QinetiQ Limited 2011

38

• Provided designers with guidelines on accuracy and bounds of applicability for the current failure theories.

 Brought together the thoughts & experience of key members of world community, traditionally at odds, to advance the science

 Altered the philosophies of renowned theoreticians about the definition of failure, creating a greater insight

NAFEMS World Congress, Boston, 23rd-26th May 2011

- Resulted in improvements to theories by identifying weaknesses
 - 50% of theories were modified.
 - 40 year old, widely adopted theories were modified for the first time.
 - the modified theories now being embedded in numerical software packages

 Highlighted gaps in theoretical &experimental understanding for the community to focus on

NAFEMS World Congress, Boston, 23rd-26th May 2011

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

3. WWFE-1 - Gaps that have been identified (1)

- Applicability of composite failure criteria to isotropic materials
- Effects of pressure on shear strength and deformation of UD lamina
- Failure of unidirectional lamina (UD) under hydrostatic pressure
- Effect of through-thickness stress on biaxial failure of UD lamina
- Effects of 3D stresses on the failure of multi-directional laminates
- Deformation of laminates under hydrostatic pressure
- 3D elastic constants of multidirectional laminates

QinetiQ

- Effects of lay-up on through-thickness strength of laminates
- Failure under combined through-thickness and shear of laminates

Failure Under 3-D Stress States

NAFEMS World Congress, Boston, 23rd-26th May 2011

3. WWFE-1 - Gaps that have been identified (2)

- Damage initiation and evolution
- Matrix cracks initiation and crack density evolution
- Delamination initiation and propagation
- Effects of ply thickness, constraints
- Effects of ply stacking sequence
- Cracking under thermal loading
- Monotonic loading, unloading and reloading
- Failure at stress concentration (e.g. open hole)
- Statistical and probabilistic nature of failure
- Leakage prediction

QinetiQ

3. WWFE-1 - Gaps that have been identified (3)

The Second World-Wide Failure Exercise (WWFE-II)

Benchmarking of failure criteria under tri-axial stresses for fibre-reinforced polymer composites

Courtesy of Vestas Wind System

QinetiQ

Rotor blades are thick at the root?

Deep-water application require increased thickness to avoid collapse?

NAFEMS World Congress, Boston, 23rd-26th May 2011

3. WWFE-1 - Gaps that have been identified (4)

The Third World-Wide Failure Exercise (WWFE-III)

Damage, fracture and continuum mechanics theories for fibre-reinforced polymer composites

Compression-compression fatigue $(+/-45/0_2)$ s CFRP, (Soutis et al).

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

4. WWFE-II - A Quick Look

The Second World-Wide Failure Exercise (WWFE-II)

Benchmarking of failure criteria under tri-axial stresses for fibre-reinforced polymer composites

NAFEMS World Congress, Boston, 23rd-26th May 2011

4. WWFE-II - Contributors to WWFE-2 (from the 60 groups invited)

	Group/name	Country	Organisation	Method/ failure criteria
1	Bogetti, Staniszewski, Burns, Hoppel, Gillespie and Tierney	USA	U.S. Army Research Laboratory	Maximum strain failure criterion
2	Carrere / Maire	France	ONERA	Chaboche's anisotropic damage
3	Cuntze	Germany	Germany	Failure Mode Concept (FMC)
4	Nelson, Hansen, Mayes	USA	Wyoming University	Multi-continuum micro-mechanics theory
5	Huang	China	Tongi University	Generalised max stress/bridging model
6	Kress	Switzerland	ETZ Zurich (Switzerland)	Hashin's theory
7	Deuschle and Kroeplin	Germany	Stuttgart university	Puck's phenomenological failure criteria
8	Pinho/Robinson/ Camanho	UK/UK/ Portugal	Imperial College/Imperial College/ University of Porto/ NASA	Improved failure criterion
9	Rotem	Israel	Technion University	Interactive matrix and fibre failure theory
10	Tsai and Ha	USA	Stanford University/ South Korea	Tsai's interactive failure theory
11	Wolfe, Butalia, Zand and Schoeppner	USA	Ohio State University, AFRL, Wright-Patterson, AFB, Ohio (USA)	Maximum strain energy failure theory
12	Ye	UK	Leeds University	Christensen's theory

Red colour: Contributors to WWFE-1

NAFEMS World Congress, Boston, 23rd-26th May 2011

4. WWFE-II - Progress to date

	•Consultation wit		
1-Establish Framework	•Call for contribution of hig		
	•Selection of participants	•Selection of "test cases"	
	 Issue invitation letter 	•Define Materials properties	
	•Participant agrees/declines	•Parameters to be predicted	
	•Establish participants list	•Assemble Data-Pack 1	Completed
	•Issue Data-Pa	Completed	
	•Participant pr		
2-PART (A): Blind	•Establish		
theoretical predictions	•Submission of Part A papers: (
	•Stringent rev		
	•Pul		
	•Issue Data-Pa		
3-PART (B):	•Submission of Part B papers: (
Comparison with Test	•Stringent	Remaining	
data	•P		

NAFEMS World Congress, Boston, 23rd-26th May 2011

4. WWFE-II - A Quick Look (Test Cases 1 and 5)

- Test Case 1 deals with an isotropic material (Epoxy resin) subjected to a range of triaxial stress states.
- Test Case 5 is concerned with a unidirectional laminate (a U/D Glass/Epoxy) subjected to the same conditions.
- The two Cases are interrelated insofar as the epoxy polymer material studied in Case 1 is the same resin matrix used in making the E-glass/epoxy composite laminate in Test Case 5.

Treatment of material isotropy/anisotropy and material heterogeneity

NAFEMS World Congress, Boston, 23rd-26th May 2011

4. WWFE-II - A Quick Look (Test Cases 1 and 5)

Test Case	Laminate lay-up	Material	Required predictions
1	Resin	МҮ750 ероху	σ_2 versus σ_3 ($\sigma_1 = \sigma_3$) envelope
5	0°	E-glass/MY750	σ_2 versus σ_3 (σ_1 = σ_3) envelope

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

4. WWFE-II - Test Case 1 - Epoxy Resin (1/2)

5 open curves, 1 closed curve in compression – compression quadrant All curves are closed in the tension-tension quadrant

NAFEMS World Congress, Boston, 23rd-26th May 2011

4. WWFE-II - Test Case 1 - Epoxy Resin (1/2)

5 open curves, 1 closed curve in compression–compression quadrant 5 closed curves, 1 open curve in tension-tension quadrant

NAFEMS World Congress, Boston, 23rd-26th May 2011

4. WWFE-II - Test Case 5 – U/D Glass/Epoxy

5 closed curves, 1 open curve in compression–compression quadrant All curves are closed in the tension-tension quadrant

NAFEMS World Congress, Boston, 23rd-26th May 2011

4. WWFE-II - Test Case 5 – U/D Glass/Epoxy

NAFEMS World Congress, Boston, 23rd-26th May 2011

• WWFE-II - Comparison between Test Cases 1 (Epoxy) and Test Case 5 (U/D Glass/Epoxy)

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

4. WWFE-II - Early Observations from Test Cases 1 and 5

- Most theoreticians (10 out of 12) employed separate equations to delineate between isotropic (Test Case 1) and heterogeneous (Test Case 2) materials.
- A conscious 'operator intervention' is required to make that selection (is that what designers want ?)
- There was significant diversity between the theoretical predictions for Test Cases 1 and 5
 - in terms of the shapes of the failure envelopes and
 - whether or not the envelopes should be open under hydrostatic compressive and/or tensile loading situations.
- The remaining Test Cases will undoubtedly provide further evidence of the resilience (or lack of) for the 12 theories

Watch this space for the next instalment !

NAFEMS World Congress, Boston, 23rd-26th May 2011

NAFEMS World Congress, Boston, 23rd-26th May 2011

5. Closing Remarks - Maintaining Awareness

Abaqus/CAE 6.10-1 (Viewp Eile Model Viewport View	Material Sect	tion <u>P</u> rofile <u>C</u> omposite	Assign Special Feature T	ools Plug-ins <u>H</u> elp N	?				×
🗋 🗃 🖩 👼 🕂 🦿 🦿 🖤						Property defaults) <u> </u>
	💻 Edit Ma	aterial							▲ k 📖 🔤
Model Results Material Library	Name: Con	nposite-material							
Model Database 🛛 🖌	C Description:		i i					Edit)	1Ľ.
Models (1) Model-1	Material B	ehaviors	1						×1
Parts	Elastic		1						-Z
B 2 € Materials (1) Name Composition	Hashin Da	mage 🥖							1 ^Z ×
Profiles		1							1Ľ.
± ∰ Assembly ± ∞ Steps (1)	10 10 10 10	1040 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	NV 61						z ^v
Part Untern Onter	General	<u>Mechanical</u> Thermal	<u>2</u> ther					Delete	
Time Points	Hashin Da	image							1
ALE Adaptive	Alpha: 0							Suboptions	2
Theraction Properties	Use te	mperature-dependent data							3
Contact Controls	Data	r field variables:							4
Constraints		Longitudinal Tensile	Longitudinal Compressive	Transverse Tensile	Transverse Compressive	Longitudinal Shear	Transverse Shear		4
${\mathbb F} {\mathcal F}$ Fields	1	Strength 1250	-970	40	-210	75	Strength 75		
Amplitudes	mildite.		1	2.9	E25351/1 11	Letter,			
BCs			💻 Su	ooption Editor					
Predefined Fields			Dama	ge Evolution					
Sketches			Туре	Energy					
Annotations			Softe	ning: Linear					
Jobs				se temperature-dependent	data				
Co-executions	-		Numb	er of field variables:	0 🐡				
	h		Da	a					
				Fracture Energy	Fracture Energy	Fracture Energy	Fracture Energy	ssive	
			1	40000	25000	600	15000		
			X					>	35
									SIMULIA
					No. 10				

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011

5. Closing Remarks - Maintaining Awareness

Name: Composite-material Description:
Material Behaviors
Elastic
te-r
<u>General M</u> echanical <u>Thermal</u> <u>Other</u>
Hashin Damage
Alpha: 0
Number of field variables: 0

NAFEMS World Congress, Boston, 23rd-26th May 2011

5. Closing Remarks - Maintaining Awareness

Professor Hashin's reasoning for declining to participate in WWFE-I, is worth noting (quoting from his letter to the organisers) :-

"my only work in this subject relates to failure criteria of unidirectional fibre composites, not to laminates.

.....I must say to you that I personally do not know how to predict the failure of a laminate (and furthermore, that I do not believe that anybody else does)".

NAFEMS World Congress, Boston, 23rd-26th May 2011

5. Closing Remarks

- Use current predictive failure theories with caution (a look at the literature is recommended)
- If you think this is a mature domain It isn't !
- High quality experimental data is required to validate many aspects of predictive failure theories

NAFEMS World Congress, Boston, 23rd-26th May 2011

5. Closing Remarks

- The theories coded into current FE tools almost certainly differ from the original theory and from the original creator's intent.
- Continued effort is needed to bridge the gap between academia, industry and the software houses in this domain

Keep an eye for the output from WWFE-II and WWFE-III

NAFEMS World Congress, Boston, 23rd-26th May 2011

5. Closing Remarks - Timelines for completing WWFE-II and WWFE-III

No	Activity	Anticipated date
1A	WWWF-II: Part A	Q3 2011
2A	WWFE-II: Part B	Q4 2011
3A	Book combining Part A and Part B	Q2 2012
1B	WWFE-III: Part A	Q4 2011
2B	WWFE-III: Part B	Q2 2012
3B	Book combining Part A and Part B	Q4 2012

NAFEMS World Congress, Boston, 23rd-26th May 2011

5. Closing Remarks - Final Comment

The Organisers of the 'World Wide Failure Exercises' wish to thank all of the participating authors.

Due to their generous support, the Exercise has been made possible and a great opportunity created to make significant progress in this difficult area.

NAFEMS World Congress, Boston, 23rd-26th May 2011

Thank you for your attention

Any Questions?

NAFEMS World Congress, Boston, 23rd-26th May 2011

QinetiQ

NAFEMS World Congress, Boston, 23rd-26th May 2011