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Outline

• Intro RF-MEMS at EPCOS Netherlands

• Physics of capacitive MEMS switch

• FE model:

• Coupling of physics domains

• Obtaining the static solution

• Homogenization of surface roughness

• Non-linear Reynolds for fluid / large signal transient

• Transient results & calibration with measurement

• Conclusion & outlook
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History of RF-MEMS and tuneable RF systems
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Actuator Error detector

Control supply
generation

DCDC

Control Algorithm
…..

if <criteria>
then do <action1>
else do <action2>
end

…… 

Adaptive multi-band antenna optimized performance

• A plug and play antenna module 
frequency band configurable
automatic performance optimization

• increased average RF output power 
• increased battery time
• lower VSWR, more system margin

Measurement data LB:
• uncorrected hand effects

• hand effects corrected by AdAM

Multiphysics modeling required
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Measurement data LB:
• uncorrected hand effects
• hand effects corrected by 

AdAM-1 module

Hand detuning effects effectively corrected – AdAM

Introduction RF-MEMS: Application example 

Concept demonstrator AdAM-1



© EPCOS AG 2008
CC 05/08 • 8

NAFEMS 2020 Vision of Engineering Analysis and Simulation
Efficient multi-physics modeling of the dynamic response of RF-MEMS switches

RF-MEMS capacitive switch

• Plate suspended by beams above bottom electrode covered with 
dielectric

• When a DC voltage is is supplied the plate is pulled-down thus creating a 
20x larger capacitance between the electrodes



© EPCOS AG 2008
CC 05/08 • 9

NAFEMS 2020 Vision of Engineering Analysis and Simulation
Efficient multi-physics modeling of the dynamic response of RF-MEMS switches

Finite element model: key to predictive design 

Capacitive switch is multi-physics problem:
• Bi-directional coupling between three different physics domains

• Non-linearities cause pull-in instability and convergence problems

FLUID, SQUEEZE 
FILM (Gas Damping)

ELECTROSTATIC 
DOMAIN

MECHANICAL (plate, 
non-linear contact, 

initial state)

Force/ 
Pressure

Displacement
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Directly coupled fluid-electro-mechanical model
Fluid-mechanical coupling with iso-thermal non-linear compressible Reynolds 
equation in directly coupled element:

Fluid domain overlaid on 
structural domain (blue)
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Directly coupled electro-mechanical model

• Electro-mechanical coupling very efficient with transducer elements (only one 
mechanical DOF & 1 Volt DOF per node)

• C(z) of transducers from prior electrostatic simulation

Symmetry planes: Symmetry BC’s or

Rotational constraint equations
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Electrostatic model
• Dummy mesh used to map charge from electrostatic mesh to nearest 

mechanical node allows for dissimilar meshes
• Electrostatic simulation repeated for various (uniform) gap heights

substrate

Bottom electrode
dielectric

Air gap

Dummy mesh
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Solving Pull-in instability: DIPIE+
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• Displacement iterations scheme (DIPIE) can solve pull-in instability 
because for every displacement there is only one voltage solution
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Solving Pull-in instability: DIPIE+

Finite Element implementation DIPIE+ to find static CV-curve:
• Consider every node to prescribe UZ displacement
• Search for voltage for which reaction force vanishes 
• Node selection based on largest electrostatic pressure increment

= prescribed displacement

Even better: Numerical continuation
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Multi-physics model: Validation of static solution

• Good agreement between measured and predicted CV curves

• Slope in closed state capacitance is important feature, caused by 
surface roughness of the contact
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Non-linear Contact model
Surface roughness is homogenized in non-linear contact model:
• Contact behavior pressure(displacement) can be extracted from CV curve
• Simulation  of contact pressure-displacement using imported AFM profiles
• Exponential function (I.e. Greenwood model)
• Multi-linear approximation in gasket element
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Squeeze film theory

Implementation of new squeeze film element in Ansys:
• structural DOF’s added to squeeze film element to create a directly coupled fluid-

structural element 

• Isothermal  non-linear compressible Reynolds equation (because of large pressure 
changes when closing):

• Rarefied gas effects taken into account by an effective viscosity (with optional 
accommodation factors) as proposed by Veijola:

• Diffuse reflection: 
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Effective viscosity extracted from measurements

R0

C0

R1

C1

Impedance analyzer or LCR meter used to measure Re[Y]

Parasitic shunt branch de-embedded before fitting mechanical Q-factor

In vacuum chamber to vary ambient pressure
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Effective viscosity extracted from measurements

Measure Q-factor for various designs, bias voltage & pressure range

Simulate Q-factor’s dependency on viscosity & bias voltage

Q-factor insensitive to exact match of first eigenfrequency
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Effective viscosity from measurements

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

0.01 0.1 1 10 100 1000 10000
Kn[-]

he
ff

[k
g/

um
/s

]

no_Holes
14_Holes
27_Holes
[1] Veijola
fit h=h0/(1+c1·Knc2)
fit with accommodation factors

No holes

14 holes

27 holes

Small deviation from Veijola

Better fit obtained by introduction of accommodation factors

159.1
00638.91 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

⋅+

=

Hp
PL L

eff
μμ[1]



© EPCOS AG 2008
CC 05/08 • 27

NAFEMS 2020 Vision of Engineering Analysis and Simulation
Efficient multi-physics modeling of the dynamic response of RF-MEMS switches

Close/opening transient results
• 8x8 40V open & close transient at 0.4bar & 1bar cavity pressure 

• FE model includes initial stress derived from interferometer profiles

dampinginertia
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• Significant difference between linearized & non-linear Reynolds

• Pressures clearly outside range for which linearization is valid
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Conclusions

• Demonstrated an efficient finite element implementation & validation of 
squeeze film effects for prediction of transient response 

• Rarefaction effects were quantified by extracting the effective viscosity 
from measurements

• Transient simulations show good agreement with measurements of 
closing and opening cycles

• Multiphysics simulation improves the design by reducing the opening 
and closing times for the capacitive switch

• Non-linear Reynolds equation must be used for this type of devices
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Outlook

2020? This is what we‘d like to have tomorrow:
• Advanced non-linear multi-physics solver to handle snap-backs:

Numerical-continuation e.g. Arc-length for multi-physics
• Non-linear materials in transient with acceptable run-times

Multi-size, multi-time scale solution
• More multi-physics domains for reliability assessments:

Charge diffusion for dielectric charging (specific for this MEMS)
HF-Electro Magnetic to predict power dissipation & temperature
Strain gradient crystal plasticity model (adds 18 DOF’s) to handle size 
effects in materials (general for MEMS & NEMS)

• Integration of FE results in system/circuit simulation:
Predict large signal system performance (e.g. ACPR ) with e.g. 
harmonic balance
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Thank you !
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