

Ensuring that CFD for Industrial Application is "Fit for Purpose"

Ensuring that CFD for Industrial Applications is "Fit for Purpose"

November 19th,, 2009 7am PST (Seattle) / 10am EST (New York) / 3pm GMT (London)

Welcome & Introduction (Overview of NAFEMS Activities)

Mr. Matthew Ladzinski, NAFEMS North America

Ensuring that CFD for Industrial Applications is "Fit for Purpose"

Chris Lea, Ph.D., Lea CFD Associates Ltd

Q&A Session

M Panel

Closing

Ladzinski

Lea

THE INTERNATIONAL ASSOCIATION FOR THE ENGINEERING ANALYSIS COMMUNITY

An Overview of NAFEMS Activities

Matthew Ladzinski NAFEMS NAFEMS North America

Planned Activities

Vebinars

- New topic each month!
 - What is V&V? December 3rd, 2009

Recent webinars:

- How to Ensure that CFD for Industrial Applications is Fit for Purpose
- Practical CFD
- Composite FE Analysis
- 10 Ways to Increase Your Professional Value in the Engineering Industry
- Dynamic FE Analysis
- Modal Analysis in Virtual Prototyping and Product Validation
- Pathways to Future CAE Technologies and their Role in Ambient Intelligent Environments
- Computational Structural Acoustics: Technology, Trends and Challenges
- FAM: Advances in Research and Industrial Application of Experimental Mechanics
- CCOPPS: Power Generation: Engineering Challenges of a Low Carbon Future
- Practical CFD Analysis
- Complexity Management
- CCOPPS: Creep Loading of Pressurized Components Phenomena and Evaluation
- Multiphysics Simulation using Implicit Sequential Coupling
- CCOPPS: Fatigue of Welded Pressure Vessels
- Applied Element Method as a Practical Tool for Progressive Collapse Analysis of Structures
- A Common Sense Approach to Stress Analysis and Finite Element Modeling
- The Interfacing of FEA with Pressure Vessel Design Codes (CCOPPS Project)
- Multiphysics Simulation using Directly Coupled-Field Element Technology
- Methods and Technology for the Analysis of Composite Materials
- Simulation Process Management
- Simulation-supported Decision Making (Stochastics)
- Simulation Driven Design (SDD) Findings

To register for upcoming webinars, or to view a past webinar, please visit: <u>www.nafems.org/events/webinars</u>

- Established in 2009
- Mext courses:
 - Dynamic FE Analysis January 12th, 2010 (six-week course)
 - Mon-Linear Analysis March 2nd, 2010 (*four-week course*)
 - Composite FE Analysis April 13th, 2010 (four-week course)
- Proposed course offerings:
 - Optimization Summer 2010 (four-week course)
- For more information, visit: www.nafems.org/e-learning

NAFEMS Events

Multiple opportunities to attend conferences, seminars/workshops and training courses

Ensuring that CFD for Industrial Applications is 'Tit for Parpose' 10th Nev 2000 Waters Dates UK	
FEB Basic 2 - Prexisorientierte Grundlagen für FEM-Analysen 23r6 Nor 2005 Dourse Wisstaden Germany	
Introduction au Calcul de Structures, aux Éléments Finte et à la Simulation Numérique 24th los 2009 Course Parls France	
Composition PE Analysia 2461 Nov 2005 Course #-Learning,Online	
Practical Stream Analysis & Pintle Demant Methods Ial Dec 2000 Dourse Sherted Upon Asser JIK	
Analisi siamica metodi & applicazioni 2xe Dec 2000 Sammar Biologna taiy	
Simulating Composite Materials and Structures are Dec 2009 Sermer Estarg Decreat	5 UNI
What is V&V7 Set Dac 2000 Websar Online USA	
Finite Element Analysis - A Universal Tool for Engineering Analysis 46 Dec 2008 Washop Dergelow, hdia	
Modélisation Système et Réduction de Modèles Dé Duc 2000 Secure Para France	÷.
Pinte Element Analysis - A Universal Tool for Engineering Analysis 179: Dec 2000 Workshop Pune Inde	

Finite Element Analysis - A Universal Tool for Engineering Analysis 17th Dec 2009 Workshop Pune,India	
Dynamic FE Analysis 12th Jan 2010 Course e-Learning,Online	EARN
Simulating Composite Materials and Structures 2nd Feb 2010 Seminar Esbjerg,Denmark	g UNI
Practical Analysis of Laminated Composite Structures 3rd Feb 2010 Seminar Bristol,UK	
Delivering CAE for the Nuclear Energy Industry 23rd Feb 2010 Seminar Knutsford,UK	
Non-Linear Analysis 2nd Mar 2010 Course e-Learning,Online	EARN
Practical Stress Analysis & Finite Element Methods 9th Mar 2010 Course Stratford Upon-Avon,UK	
Coupling 1D and 3D CFD: The Challenges and Rewards of Co-Simulation 17th Mar 2010 Seminar Gaydon,UK	11
Composites FE Analysis 13th Apr 2010 Course e-Learning,Online	EARN
UK Conference 2010 - Engineering Simulation: Contributing to Business Success 8th Jun 2010 Conference Oxford,UK	

Let us know if you would like to schedule an on-site training course

For more information, please visit: <u>www.nafems.org</u>

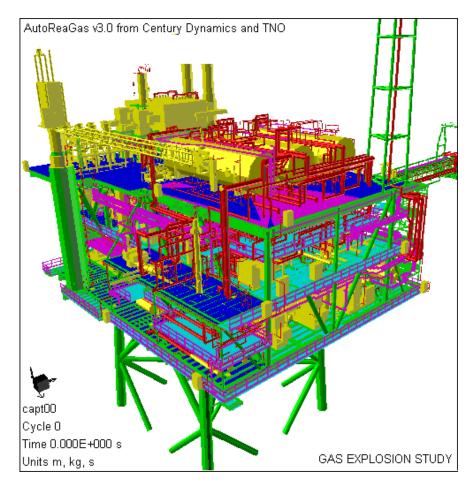
Ensuring that CFD for industrial applications is 'Fit for Purpose'

Dr Chris Lea

- Dr Chris Lea, FIMechE
- 25 years experience in CFD
- BSc Mechanical Engineering
- MSc by research experimental fluid flow
- PhD in CFD turbulence modelling for in-cylinder flows
- 12 years leading CFD team in UK HSE – industry regulator
- Independent CFD consultant since 2004

www.leacfd.com

Overview


- Need for, and meaning of, 'Fit for purpose' CFD
- Examples of simulations which are fit for purpose
- General procedure for fit for purpose CFD
- Idealisation an introduction
- Building confidence
- Further examples of idealisation, and potential pitfalls
- Concluding remarks
- Questions and answers

Industrial CFD project

- common characteristics
- Complex geometry
- Complex physics
- Uncertain boundary conditions
- •
- Time-constraints
- Accuracy demands
- Finite compute resources
-etc

c/o Century Dynamics Ltd

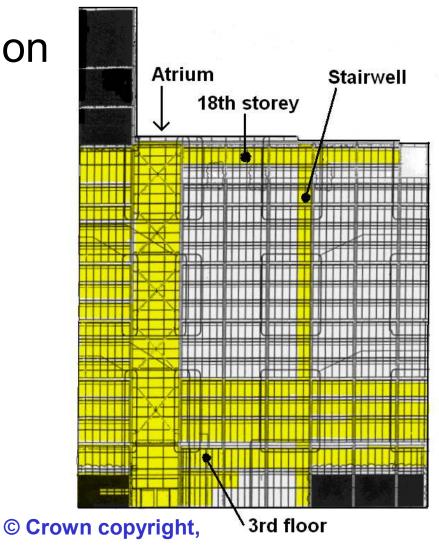
'Fit for Purpose'

 To met project aims, resources must be allocated to best effect and so that an appropriate compromise is obtained between accuracy, timeliness, staff effort and computing costs.

"CFD which is fit for purpose meets project aims with an optimal use of available resources"

"Ensuring that CFD for industrial applications is Fit for Purpose"

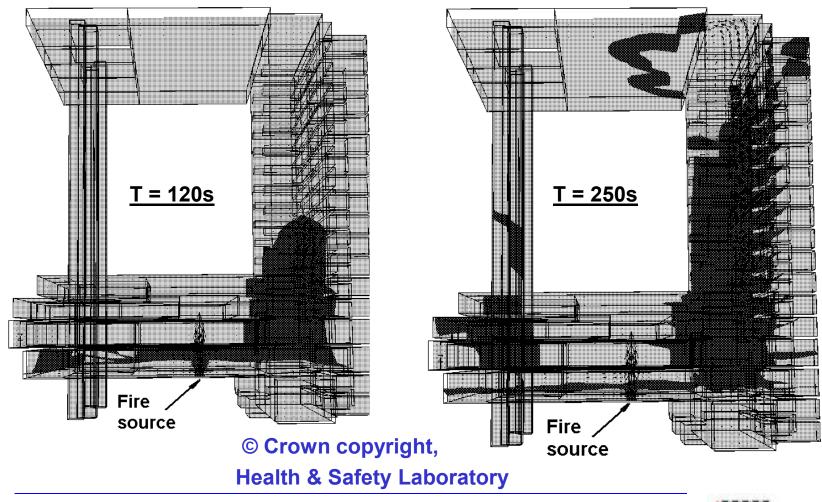
- New NAFEMS book
- Targeted at new and improving CFD analysts
- Main focus is industrial applications with significant complexity
- Examples contributed by industry, software vendors, consultants, academia and other research institutions
- ~80 pages, >40 references
- Due for printing and distribution in early 2010

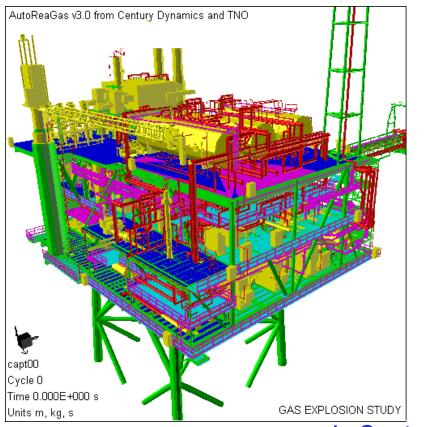


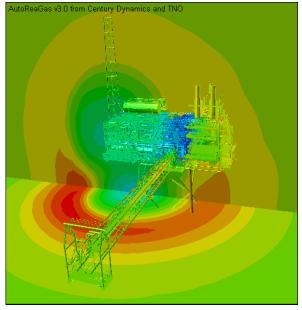
'Fit for purpose' simulation Example 1

- Smoke movement in a high-rise building
- Aim: How long for smoke to travel from a fire on the 3rd floor to the 18th floor?
- Computational domain highlighted in yellow
- Omitting intervening floors results in a more efficient simulation, which nevertheless still meets project aims

Lea CFD Associates Limited

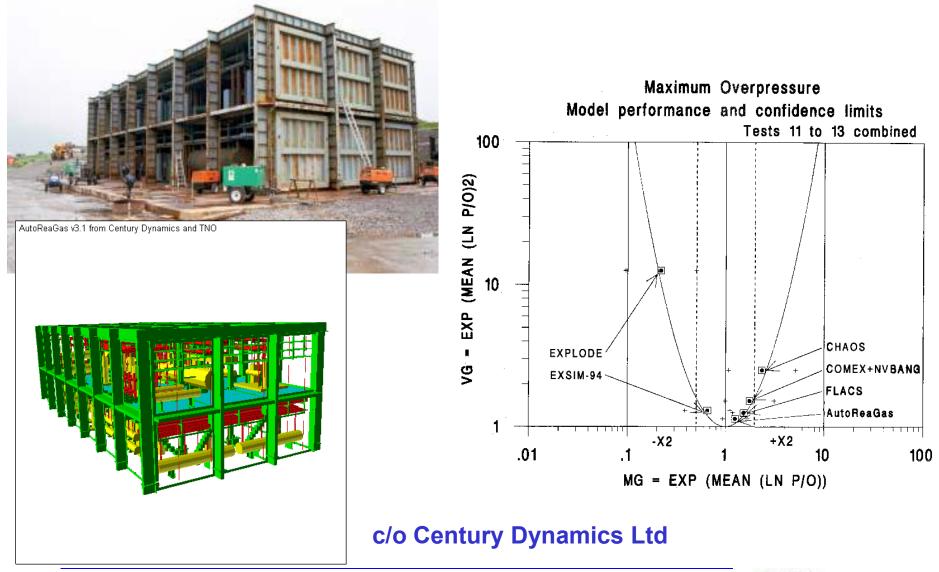

Health & Safety Laboratory


'Fit for purpose' simulation - Example 1



'Fit for purpose' simulation Example 2

- Gas explosion hazards on offshore platforms
- Aim: predict explosion pressure
- Effects of small-scale geometry on flame front are not resolved explicitly
- Instead, a 'sub-grid model' is used



c/o Century Dynamics Ltd

Lea CFD Associates Limited

General procedure for fit for purpose CFD (1)

- 1. Determine the purpose of the simulation
- 2. Identify accuracy requirements and resources available
- 3. Break the simulation down into its component tasks:
 - domain
 - geometry creation/import/clean-up
 - meshing
 - physical models
 - physical properties
 - boundary conditions
 - numerical treatments & convergence
 - analysis of results

General procedure for fit for purpose CFD (2)

- 4. Identify idealisations leading to beneficial simplifications within each task, whilst still meeting project requirements
- 5. Make an initial allocation of resources to component tasks, taking into account the object and required accuracy of the simulation so as to balance resources appropriately
- 6. Consider any further idealisations and simplifications
- 7. Refine the allocation of staff and computing resources across simulation tasks.
- 8. Review simulation time-scales, required staff effort and computing resources comparing these against project constraints, and if necessary repeat steps 6 to 8

Idealisation

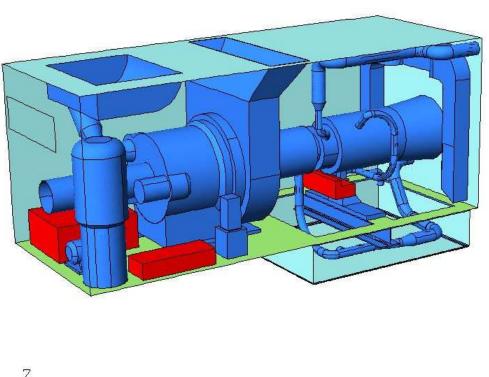
Idealisation is a key step in this general procedure

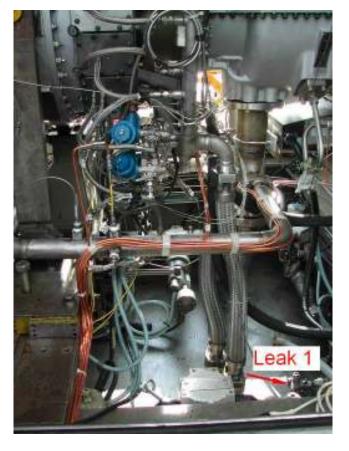
Seeking to apply knowledge and understanding of appropriate idealisations which will lead to beneficial simplifications

Idealisation – stripping away of unnecessary complexity

An example.....

Example of idealisation: Simulation of leak hazards in gas turbine enclosures

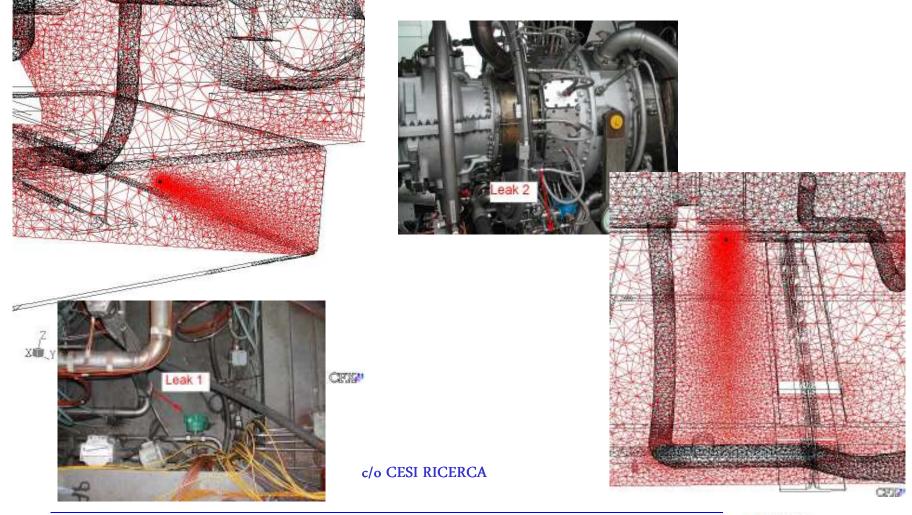



c/o CESI RICERCA

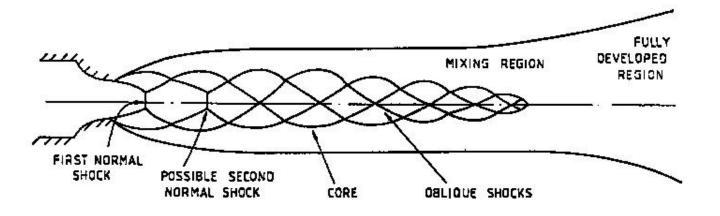
Example of idealisation: Geometry

Z X

c/o CESI RICERCA

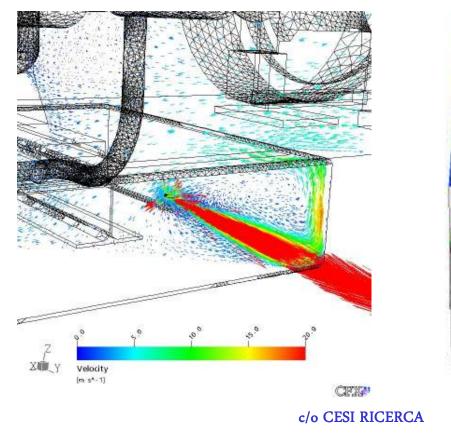


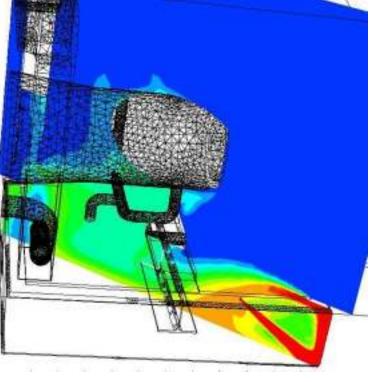
Example of idealisation: Mesh



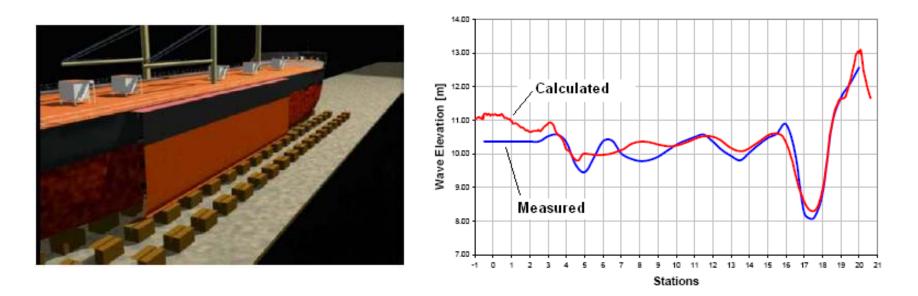
Example of idealisation

- Physical properties methane CH₄, not natural gas
- Physical sub-models sub-grid model for unresolved congested regions
- Boundary conditions source model for gas release



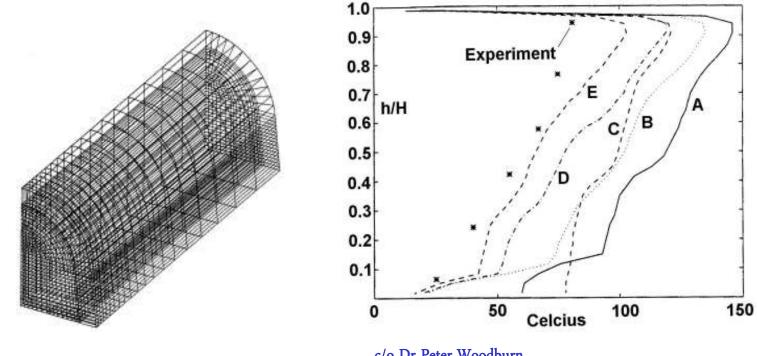


Example of idealisation


1	I Introduction - Aims and scope of the guidance					
2	2 Overview of CFD methodology					
3	3 Aims, benefits and limitations of a CFD approach					
4						
5						
	5.1					
	5.2					
6		2				
	б.1	Turbulence		12		
	6.2	Compressibility	e Ivings et al (2004)	13		
	6.3	Buoyancy	• • • •	13		
	б.4	Heat transfer		13		
	6.5			14		
	6.6	-				
	6.7					
7	Bo					
	7.1					
	7.2					
	7.3					
8						
	8.1					
	8.2	Convergence		19		
9						
10	-					
11						
12						
13	3	References				

Building confidence (1)

1. Validation – by comparison of simulations against welldocumented measurements


c/o Lloyds Register EMEA, Maritrans Operating Company & CD-adapco

Building confidence (2)

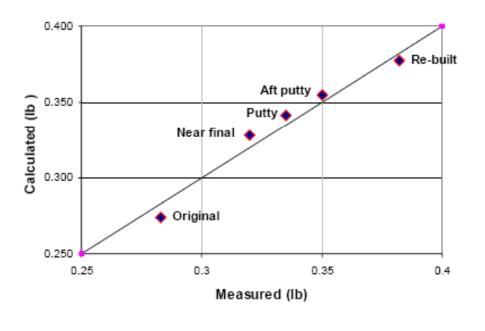
2. Sensitivity tests

c/o Dr Peter Woodburn

Building confidence (3)

3. Draw on existing knowledge:

- software vendor
- wider CFD community (www.cfd-online.com, etc)
- colleagues
- published literature (books, journals, etc)
- 4. NAFEMS books published & in-preparation (turbulence modelling, validation for industrial CFD)
- 5. Best practice guidelines, e.g. 'ERCOFTAC' European Research Community On Flow, Turbulence And Combustion, 'Quality & Trust in Industrial CFD Analysis', 2000; also see QNET-CFD Wiki.
- 6. Hand calculations for a reality check!



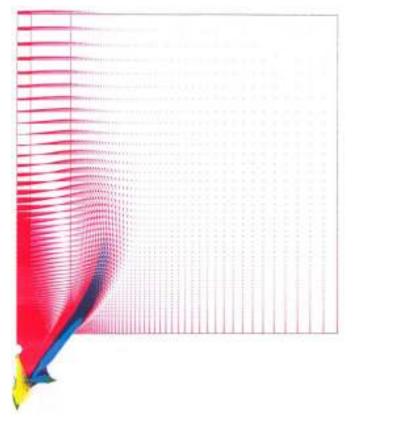
Further examples of idealisations, and some potential pitfalls (1)

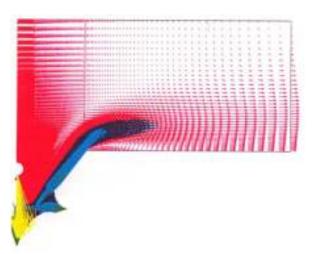
• Use of symmetry planes

c/o Lloyds Register EMEA, Maritrans Operating Company & CD-adapco

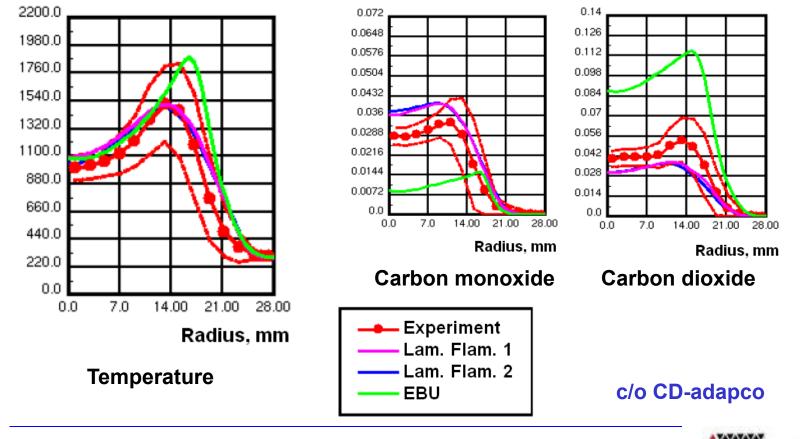
NAFEMS

Idealisations and potential pitfalls 2-D simulations (1)




© Crown copyright, Health & Safety Laboratory

Idealisations and potential pitfalls 2-D simulations (2)


© Crown copyright, Health & Safety Laboratory

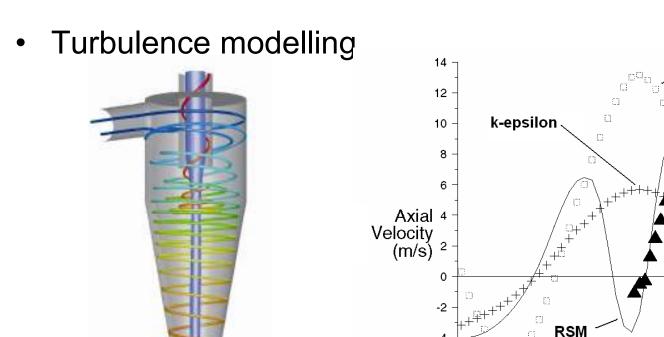
Idealisations and potential pitfalls, Flow physics

• Combustion modelling – gas burner

RNG

Measured

0.02 0.04 0.06 0.08 0.1


Idealisations and potential pitfalls, Flow physics

-4

-6

Cyclone separator

-0.1 -0.08 -0.06 -0.04 -0.02

c/o ANSYS Europe Ltd

0.04 -0.02 0 0.02 0. Z-Coordinate (m)

Pitfalls - distractions

Meshing the geometry.....or the flow?

- Are you meshing the geometry?
- But you should be meshing for the <u>flow!</u>
- So, mesh to resolve the key flow features – e.g. regions of steep flow gradients

Concluding remarks

- CFD is not an end in itself; it is a means to meet project requirements
- The object and required accuracy of a simulation should be kept in mind at all stages of a CFD project
- It is important that unnecessarily complex CFD simulations are not undertaken for their own sake or challenges
- Thorough planning is the foundation for CFD which is fit for purpose

Questions

- Website: <u>www.nafems.org</u>
- Phone: 1.704.248.2628
- Email: <u>matthew.ladzinski@nafems.org</u>

THE INTERNATIONAL ASSOCIATION FOR THE ENGINEERING ANALYSIS COMMUNITY

Thank you!

matthew.ladzinski@nafems.org