

An Introduction to Composite FE Analysis

Agenda

An Introduction to Composite FE Analysis

July 23rd, 2009 8am PDT (Seattle) / 11am EDT (New York) / 4pm BST (London)

Welcome & Introduction (Overview of NAFEMS Activities)
 Mr. Matthew Ladzinski, NAFEMS North America
 An Introduction to Composite FE Analysis
 Mr. Tony Abbey, FETraining
 Q&A Session

Merce Panel

MClosing

Ladzinski

Abbey

THE INTERNATIONAL ASSOCIATION FOR THE ENGINEERING ANALYSIS COMMUNITY

An Overview of NAFEMS Activities

Matthew Ladzinski NAFEMS NAFEMS North America

Planned Activities

Vebinars

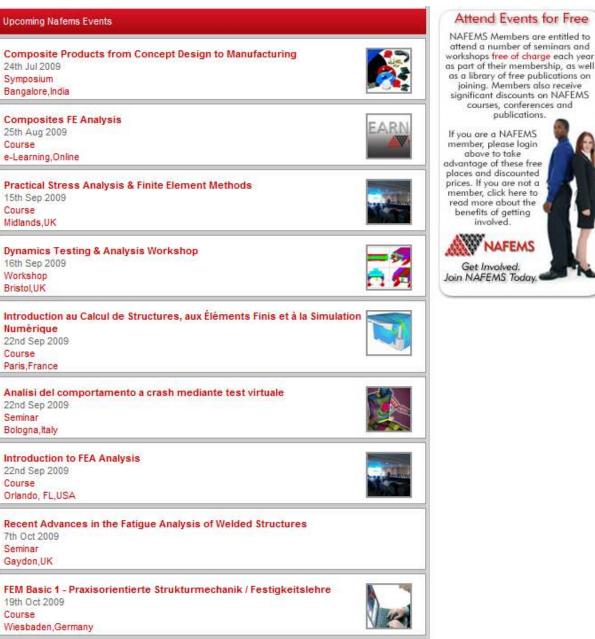
- New topic each month!
- Recent webinars:
 - Composite FE Analysis
 - 10 Ways to Increase Your Professional Value in the Engineering Industry
 - Dynamic FE Analysis
 - Modal Analysis in Virtual Prototyping and Product Validation
 - Pathways to Future CAE Technologies and their Role in Ambient Intelligent Environments
 - Computational Structural Acoustics: Technology, Trends and Challenges
 - FAM: Advances in Research and Industrial Application of Experimental Mechanics
 - CCOPPS: Power Generation: Engineering Challenges of a Low Carbon Future
 - Practical CFD Analysis
 - Complexity Management
 - CCOPPS: Creep Loading of Pressurized Components Phenomena and Evaluation
 - Multiphysics Simulation using Implicit Sequential Coupling
 - CCOPPS: Fatigue of Welded Pressure Vessels
 - Applied Element Method as a Practical Tool for Progressive Collapse Analysis of Structures
 - A Common Sense Approach to Stress Analysis and Finite Element Modeling
 - The Interfacing of FEA with Pressure Vessel Design Codes (CCOPPS Project)
 - Multiphysics Simulation using Directly Coupled-Field Element Technology
 - Methods and Technology for the Analysis of Composite Materials
 - Simulation Process Management
 - Simulation-supported Decision Making (Stochastics)
 - Simulation Driven Design (SDD) Findings

To register for upcoming webinars, or to view a past webinar, please visit: <u>www.nafems.org/events/webinars</u>

Established in 2009

Mext courses:

- M Dynamic FE Analysis July 14th, 2009 (six-week course)
- Composite FE Analysis August 25th, 2009 (four-week course)
- Proposed course offerings:
 - Non-linear Fall 2009 (four-week course)
 - Stochastics Fall 2009
 - Verification & Validation Fall/Winter 2009
- For more information, visit: www.nafems.org/e-learning



Multiple opportunities to attend conferences, seminars/workshops and training courses

Let us know if you would like to schedule an on-site training course

For more information, please visit: <u>www.nafems.org</u>

NAFEMS Events

Welcome and Agenda

Overview of the NAFEMS e-Learning Course

Introduction to Composites FE Analysis

Q and A

Composite FE Analysis

August 25th - September 15th, 2009

Four-Week Training Course

Members Price: £143 | €165| \$<u>235</u>

Non-Members Price: £228| €264| \$<u>375</u> Order Ref:el-003 Event Type:Course

Location: E-Learning,Online

Date: August 25, 2009

www.nafems.org/events/nafems/2009/el003/

Composites Analysis

Many designs now use composite structures or components, taking advantage of:

- increased structural strength and stiffness to weight ratios
- simpler manufacturing process
- more innovative design capability

The nature of the composite used can range from:

- cheap and freely available glass fiber reinforced systems to
- exotic and specifically tailored carbon, Kevlar or even metal/matrix systems

Many forms of manufacturing process available.

Composites Analysis

The challenge for the designer and analyst is to determine the resulting stiffness and strength of the design.

Faced with the complexity of real world structural systems the analyst has to make decisions on the FEA analysis :

- the type of idealization
- level of detail required
- definition of failure

The design variations available with a composite material are immense; ply thickness, orientation and property can all be varied to tune the structural response.

A rational approach is needed to predict the strength and stiffness and how to use the FEA data to help design and verify the structure.

Composites Analysis

Your design may include thick composite sections with large numbers of plies, there may be regions of significant ply drop off.

Tee joints may be loaded in tension. In these cases the through thickness effects become very important for strength prediction.

The shape of the structure may imply changes in draping angle or layup thickness and it may be important to model this accurately.

Composites Analysis

There are a wide range of failure theories, together with potentially large amounts of stress or strain data from a multi ply layup.

Due to the nature of the composite the stress components can include many more terms than a conventional metallic material for example.

Whatever the nature of the challenge, this objective of this course is to break down the composite analysis process into clearly defined steps, give an overview of the physics involved and show how to successfully implement practical solutions using Finite Element Analysis.

Overview of Dynamics e-Learning Class

Why an e-learning class?

In the current climate travel and training budgets are tight. To help you still meet your training needs the following e-learning course has been developed to complement the live class.

The e-learning course runs over a four week period with a single two hour session per week.

Bulletin Boards and Email are used to keep in contact between sessions, mentoring homework and allowing interchange between students.

E-learning classes are ideal for companies with a group of engineers requiring training. E-learning classes can be provided to suit your needs and timescale. Contact us to discuss your requirements.

We hope that small companies or individuals can now take part in the training experience.

Agenda

1. What are composites?

Review of different forms and manufacturing processes.

2. How do composites vary from metallic structures?

Overview of material properties and the ABD matrix terms. Hints on practical design methods.

3. How do I set up a composite FEA?

Overview of typical processes. Keeping track of plies, mold lines etc.

Agenda

4. How good is my FEA idealization?

The importance of fiber orientation, draping and thickness effects.

5. How do I know whether the composite has failed?

Basic First Ply failure theories

6. How do I organize my results, where do I start looking?

Failure indices, Strength ratios.

Agenda

7. Through thickness and edge effects such as delamination

Usage of solid and thick shell elements.

8. Advanced failure methods

Progressive ply failure, cohesive elements, fracture mechanics methods (VCCT)

Agenda

1. What are composites?

Review of different forms and manufacturing processes.

2. How do composites vary from metallic structures?

Overview of material properties and the ABD matrix terms. Hints on practical design methods.

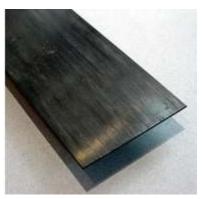
3. How do I set up a composite FEA?

Overview of typical processes. Keeping track of plies, mold lines etc.

Consider material types:

ISOTROPIC - the same material properties in all directions, steel is a typical example.

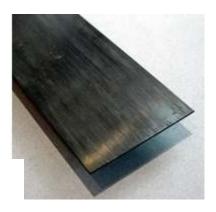
Easy to measure properties



ANISOTROPIC - different material properties in all directions, a chunk of volcanic rock is an example.

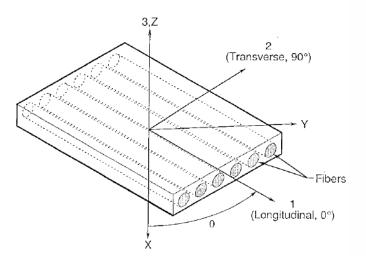
Tough to measure or predict properties

ORTHOTROPIC – special case of anisotropic, clear material directionality in 3 directions –represents a carbon fiber/resin system, for example, where the along axis, transverse axis and through thickness axis are different.

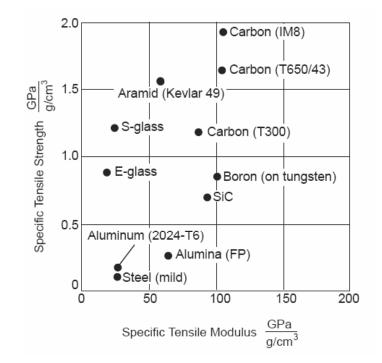



Measurable and predictable properties – some challenges

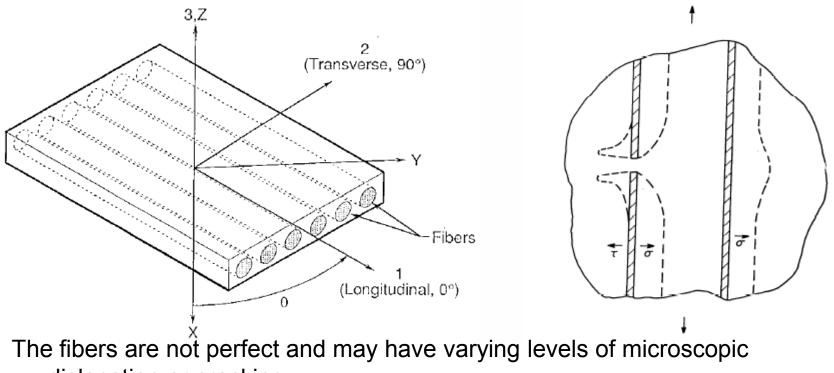
2D ORTHOTROPIC, A further simplification is where we ignore the through thickness stress. This is the usual starting point for what we call Classical Laminate Theory, the foundation of most FE solutions.



* Note the limitations implied here – we will revisit this



- The composite is a system which consists of fibers in a resin or similar medium (usually called the matrix)
- The important strength and stiffness characteristics are provided by the high strength fibers
- It is important to consider both the fibers and the matrix in the material stiffness and strength considerations



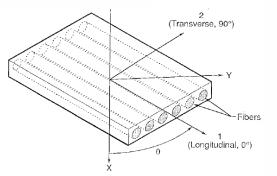
The fibers in isolation in a perfect test setup can have incredibly strong and stiff properties.

However they cannot be used in this form, they need a binding matrix

dislocation or cracking

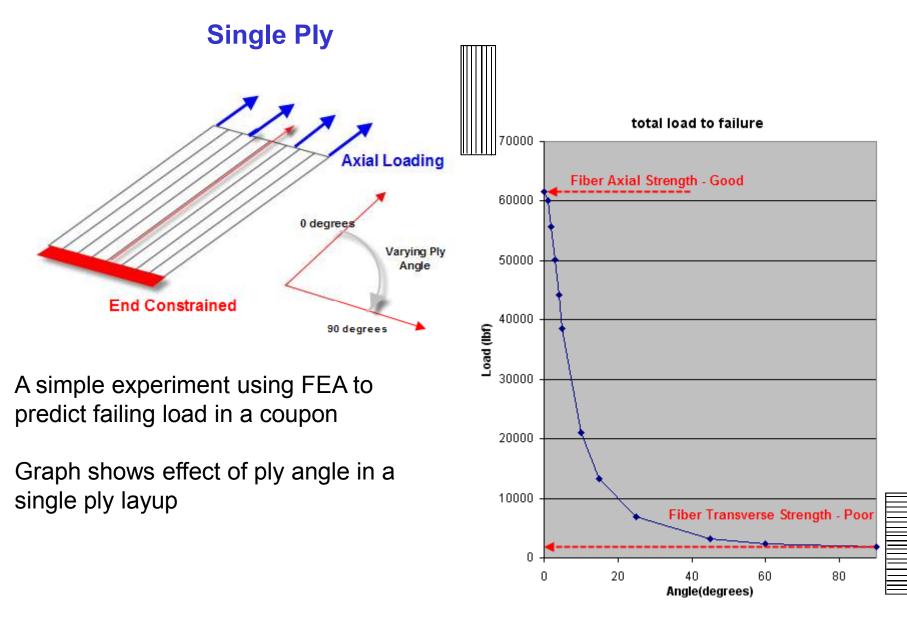
The matrix is relatively weak, but acts to link the fibers together

The strength /stiffness is an aggregate of the two ingredients

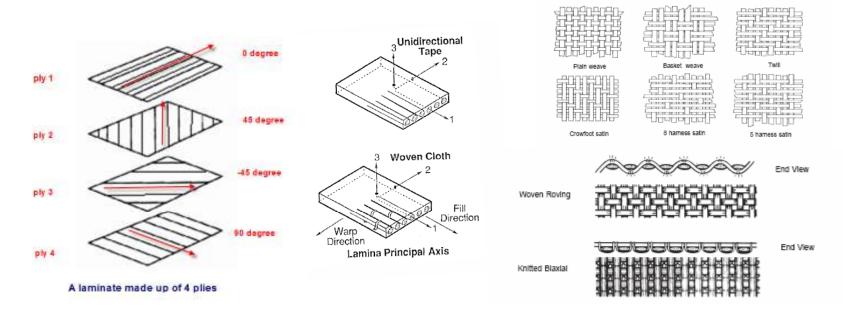


Property	Tow	Fabric	Triaxial braid
	AS4/8552	AS4/8552	AS4/PR500
Longitudinal modulus, E ₁ (Msi)	18.30	9.20	7.50
Transverse modulus, E ₂ (Msi)	1.36	9.20	7.50
Lateral modulus, E ₃ (Msi)	1.36	1.30	
In-plane shear modulus, G ₁₂ (Msi)	0.76	0.72	0.57
Transverse shear modulus, G ₂₃ (Msi)	0.52	0.50	0.40
Transverse shear modulus, G ₁₃ (Msi)	0.76	0.50	0.57
Major Poisson's ratio, v 12	0.32	0.04	0.29

The table shows the stiffness of a group of Graphite – Epoxy systems


The directionality is clear

Convention is fiber/matrix as the system designation



In practice plies are rarely used individually, multiple angles are used to tailor the performance of the composite.

A stack up of plies is formed either by bonding sheets together or by some form of weaving

However the FEA idealization usually assumes a 'sheet-like' equivalent


'**Pre-preg layup**' is a very common form of assembly where multiple dry unidirectional fiber/matrix sheets (pre-impregnated) are laid up and then wetted with a resin to achieve bonding between the sheets.

Pressure and temperature may be used to achieve good bonding or to achieve more complex shapes

Resin Transfer molding (RTM). Cloth systems may be wetted externally and cured, or the system may be augmented by creating a vacuum in the part using a bagging system. Resin is then fed into the system and is absorbed into the composite.

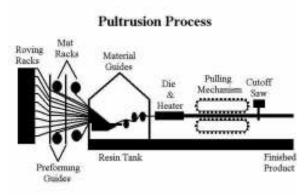
Pressure applied between dies can be used as an alternative to creating a vacuum.

The cure may be at room temperature or elevated temperature dependent on the system

Filament winding is used to create tubular based forms. With the use of sophisticated multi axis machines and CNC, spherical, conical and more complex shapes can be formed. It is suitable for very large components such as tunnel liners, rocket fuel tanks etc.

The resin may be added as the filament through a runs a bath, or it may be sprayed or applied later on the mandrel.

The mandrel and component may then be transferred to an oven for curing



Other manufacturing processes

Pultrusion – a sock like woven shape is braided and then pulled through a heated die to form components such as drive shafts, stiffeners, rods etc.

Automated tape placement – a multi axis head under CNC control is able to lay individually programmed paths of tape across a flat bed or die shape. Very sophisticated ply orientations can be designed.

Many forms of composites are available, here a fabric is offered in a range of weights which control stiffness and strength

SWING PRODUCT INFORMATION	OC* DOUBLE BIAS FABRICS (±45')									
		PHYSICAL PROPE	ERTIES / ANAILA	BLE PRODUC	TS .					
RODUCT DESCRIPTION	PRODUCT APPLICATION	FABRIC STYLE	tofal weight (02/10/)	ø	901	+49	-45'	NAT		THICKNESS (Ches)
* Double Bas Fabrics are a stitch-bonded composite	CC Double Blas Fabrics ofter superior structural performance	DB120	11.6	0	0	5.6	5.6	0		.021
orcement combining equal amounts of continuous fiber	in applications subject to extreme shear and torsion stress.	DBM1208	19.3	0	0	5.6	5.6	7.6		.037
ted in the +45° and -45° directions into a single fabric.	These properties are ideal for applications such as wind	DB170	17.6	0	0	8.6	8.6	0		.029
to rotate other materials on a bias. The versatile fabric.	blacks, marine panels, and snowboards. These fabrics offer in the improved conformability over blaxial fabrics yet maintain	DBM1708 DBM1709G	24.9 24.9	0	0	8.6 8.6	8.6 8.6	7.6 7.6		044
from high-quality fibers, is available in a variety of	comparable laminate properties, making them ideal for	DBM17093	31.2	0	0	8.6	8.6	13.5		049
s and weights to meet your particular requirements.	placement within complex parts. Reduced fabric print-	DBM1715G	31.2	ŏ	ő	8.6	8.6	13.5		049
nput fibers are designed to give controlled wet-out and	through results in enhanced aesthetics on finished products	DB240	24.7	0	0	12.1	12.1	0	0.	034
ant laminate properties. Each fabric can be combined	while offering material and labor savings.	DBM2408	32.3	0	0	12.1	12.1	7.6		.048
glass mat or veil for enhanced performance, surface		DBM2409G	32.3	0	0	12.1	12.1	7.6		.048
or handling.		DBM2415 DBM2415G	38.2	0	0	12.1	12.1	13.5		.057
NTURES Isup-Free construction PPOSING ± 45° fabric construction (ffers resistance	PRODUCT BENEFITS • INFROMED FREE ALIXIMENT AND MECHANICAL PROFERTES • FINEHED PARTS FEBS (KNI LINDER EXTREME FILMA AND	SAMPLE MECHAN Sample Mechanic (50% datas conte	os Properties of		sad on D8170		Mechanical Prop 18 (50% aless co			nd on
SMP-FREE CONSTRUCTION	• MPROVED FREE ALKHMENT AND MECHANICAL PROPERTIES	CONTRACTOR	cal Properties of nt by weight).			DBM170	18 (50% gløss co	contant by w		
NPFREE CONSTRUCTION Posing ±45° fabric construction offers resistance Twisting	INFORMED FREER ALIXINENT AND NECKNINCLI PROFERTES FINISHED PROTESTICAL UNDER EXTIREME SHEAR AND TORDIN STRESS	Sampla Machanic (50% gaas conha Tensile (ASTN	cal Properties of int by weight). B N D 638)	Laminata ba KSLISH UNITS	SI UNITS	DBM170	(ASTM D 63	Entrant by w ENG 89)	waight). G LISH UMIT S	9 UN
APFREE CONSTRUCTION 1939/62 = 45° faience construction offers resistance 1945/1946 Listen Conformation 1946 Print-Through	INFRURED FREER ALIXINENT AND NECKNINICAL PROPERTIES FINIDELED FREITS FERSION LINDER EXTREME FIELR AND TORSING FRAGENET IN COMPLEX FRAITS	Sample Machanic (50% gazs contai	cal Properties of nt by weight) B ND 638)	Laminata ba		DBM170 Tensile Strength Modulus	(ASTM D 63	ENG ENG 39) 2	waight). CLISH UMITS 39.8 ksi	9 UN 274 M
NPFREE CONSTRUCTION Young ±45° refric construction offers resistance Twisting Ellent conformareity	INFRURED FREER ALEXINENT AND INCLUMICAL PROFERES INVERTED FREITS FERS GRIL LINDER EXTREME SITEM AND INFRURED MERTS FERS GRIL LINDELEX FREITS EINAUMIED AESTHEITUS WITH NAERUL AND LARDR SANNIGS	Sample Mechanic (50% gass contai Tensile (ASTN Strength Modulus Compression 1	cal Proparties of mt by weight). B ND 638)	Laminata ba KLISH UNITS 39.8 ksi 2.18 msi	SI UNITS 274 MPa 15.0 GPa	Tensile Strength Modulus Compro	(ASTM D 63	ENG ENG 39) M D 695)	weight); CLISH UNITS 39.8 ksi 2.18 msi	9 UH 274 M 15.0 G
RFFREE CONSTRUCTION OSING ±45° FIBERIC CONSTRUCTION (FFERS RESISTANCE Wigting Ellent Construction) KEE Print-Tracuoal Ec Conserved With Various Muts (continuous filament Mat, 1 Formed Wat, Chapped Stands and Verly	INFORMED FREER ALKNIEHT AND MECHANICUL FROFERTES TINEHED FARTIS FEBS (KM LINDER EXTREME FILMA AND DERSUM STRESS INFORMED PRACEMENT IN COMPLEX FARTIS EINFURGED AESTHETICS WITH MARENIAL AND LABOR SWINGS EINFURGED AESTHETICS WITH MARENIAL AND LABOR SWINGS MORTANE DIRITHMINGL GIGGE-EFFECTIVE SECONDARY BONGTING, AND HANKLING	Sample Machanic (50% gass conte Tonsilo (ASTM Strangch Modulus Comprosition 1 Strangch	cal Propantias of mt by waight). P N D 638) (ASTM D 696	Laminata ba KLISH UNITS 39.8 ksi 2.18 msi 36.6 ksi	SI UNITS 274 MPa 15.0 GPa 252 MPa	Tensile Strength Modulus Strength Strength	(ASTM D 63 ession (ASTM	ENC ENC 39) 1 2 M D 695)	weight). CLISH UNITS 39.8 ksi 2.18 msi 36.6 ksi	9 UN 274 M 15.0 C 252 M
NPFREE CONSTRUCTION YOSING ± 45° FARENC CONSTRUCTION OFFERS RESISTANCE YNGTING Ellent Construction Letter formf-franzen UKE Formf-franzen Construction Vita Various Mats (continuous filment Mat,	INFRVAD FEER ALKNIEHT AND MECHANICUL FRIGERTES FINDHED MARIS FEBS GRI UNDER EXTREME FILAR AND TREDUIS STRESS MIRDVED PAGEMENT IN COMPLEX FARIS EINAVIGED ASTERTISS WITH MAERAL AND LAEGR SUIVIS MIRDVED FRINTFHAUGA, COSF-IFFECTAR SECONDART EONING;	Sample Mechanic (50% gass contai Tensile (ASTN Strength Modulus Compression 1	cal Proparties of mt by weight). N D 638) (ASTM D 695	Laminata ba KLISH UNITS 39.8 ksi 2.18 msi 36.6 ksi 2.06 msi	SI UNIFS 274 MPa 15.0 GPa 252 MPa 14.2 GPa	Tensile Strength Moduke Compri Strength Moduke Flexura	(ASTM D 63 ession (ASTM	ENG 89) M D 695) 2 790)	veight). CLISH UNITS 39,8 ksi 2,18 msi 36,6 ksi 2,06 msi	9 UH 274 N 15.0 C 252 N 14.2 C
RFFREE CONSTRUCTION OSING ±45° FIBERIC CONSTRUCTION (FFERS RESISTANCE Wigting Ellent Construction) KEE Print-Tracuoal Ec Conserved With Various Muts (continuous filament Mat, 1 Formed Wat, Chapped Stands and Verly	INFORMED FREER ALKNIEHT AND MECHANICUL FROFERTES TINEHED FARTIS FEBS (KM LINDER EXTREME FILMA AND DERSUM STRESS INFORMED PRACEMENT IN COMPLEX FARTIS EINFURGED AESTHETICS WITH MARENIAL AND LABOR SWINGS EINFURGED AESTHETICS WITH MARENIAL AND LABOR SWINGS MORTANE DIRITHMINGL GIGGE-EFFECTIVE SECONDARY BONGTING, AND HANKLING	Sampla Muchanik (50% gass contai Tonsilo (ASTN Strangth Motulus Comprossion I Strangth Motulus	cs Properties of in by weight) IND 638) (ASTMID 696) IMD 790)	Laminata ba KLISH UNITS 39.8 ksi 2.18 msi 36.6 ksi	SI UNITS 274 MPa 15.0 GPa 252 MPa	Tensile Strength Moduke Strength Strength Moduke	(ASTM D 63 ession (ASTM a (ASTM D 7	ENG ENG 39) M D 695) 2 2 790) 6	veight). CLISH UNITS 39,8 ksi 2.18 msi 36,6 ksi 2.06 msi 69,9 ksi	

NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards

V1.0 Page 30

Here a glass fiber and low strength carbon cloth are offered

	F	7725 iber Glass Fabric	1	
	Product Data			
STYLE 7725		US System	SI Units	
Type of Yams	Warp Yam: Fill Yam:	ECG 75 1/0 ECH 25 1/0	EC9 68 EC11 204	
Fabric Weight, Dry		8.80 oz/yd²	298 g/m²	
Weave Style	2/2 Twill			
CONSTRUCTION			190	
Nominal Construction	Warp Count: Fill Count:	54/in 18/in	21.3/cm 7.1/cm	
Fabric Thickness		9.3 mils	0.24 mm	
Yarn Breaking Strength	Warp Filling	300 lbf/in 300 lbf/in	263 daN/5cm 263 daN/5cm	
Markets	Aeronautics/Aerosp Recreational	ace		
Applications	Aircraft Advanced Composites			
	Low Pressure Composites			
MPORTANT				
Al' Information is believed to be au limited data. The values listed fo noted. Users should make their o made subject to our standard ten style listed may not be available fo FOR FURTHER INFORMATIO	ir weight, thickness, and brea win assessment of the suitab ns of sales which include lin om inventory, and minimum o	sking strengths are typical gre lity of any product for the pur itations on itability and other rder quantities may apply.	ige values, unless otherwise pose required. All sales are	
HEXCEL	2200 S. Murray Ar Anderson, SC 296 USA Phone: 864-225- Fax: 864-250-656	22 Fullerton, CA 92 USA 7028 Phone: 714-278	833 69608 Villeurbanne C France -0850 Phone: 33 4 72 44 40	

		716 Specialty Fabri Product Data	cs
STYLE 716 Type of yarns	Warp Yarn	3K Carbon, 33 MSI	
rype or yands	Alii Yam	ECG 75-1/0	
Fabric Weight	5.0 170	(0.2' yd#) (g/m²)	
Weave Style	Plain		
CONSTRUCTION			
Nominal Construction	Warp Count	16	
yarnsinch	All Count	16	
Fabric Thickness	7.0 0.18	(milis) (mm)	
Breaking Strength	n'a n'a	(Df/In) (Df/In)	
Markets	Recreational		
Applications	Low Pressure Comp	ostes	
assessment of the suitability (of any product for the purpose re ons on ilability and other imports	acceptance of liability. Users sh applied. All sales are made subj ni terms. The Buric siyle listed	ect to our standard terms 🛛 🐊
FOR FURTHER INFORMATIO	ON, PLEASE CONTACT US		
	excel Schwebel	2200 S. Murray Ave. P.O. Box 2627 Anderson, SC 29622 Phone: 864.225.7026	580 North Gilbert Fullerion, CA 92833 Phone: 714.278.047

NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards

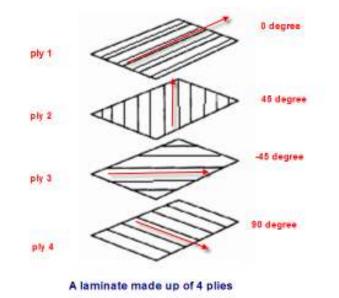
Agenda

1. What are composites?

Review of different forms and manufacturing processes.

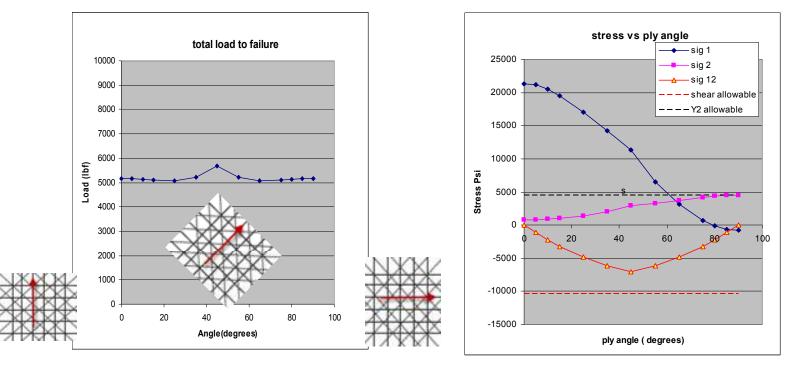
2. How do composites vary from metallic structures?

Overview of material properties and the ABD matrix terms. Hints on practical design methods.


3. How do I set up a composite FEA?

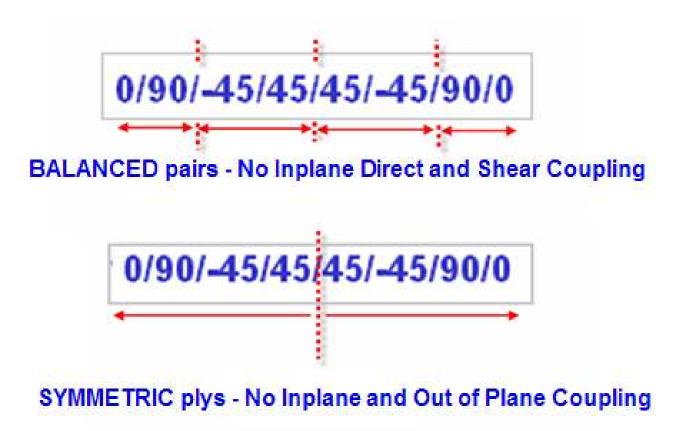
Overview of typical processes. Keeping track of plies, mold lines etc.

- **Single Ply directions exposes weakness**
- Ply layups used of multiple orientation



Shorthand 0/45/-45/90
 Tuning the layup orientation, thickness and stacking order is key to optimum design

2. How do composites vary from metallic structures?

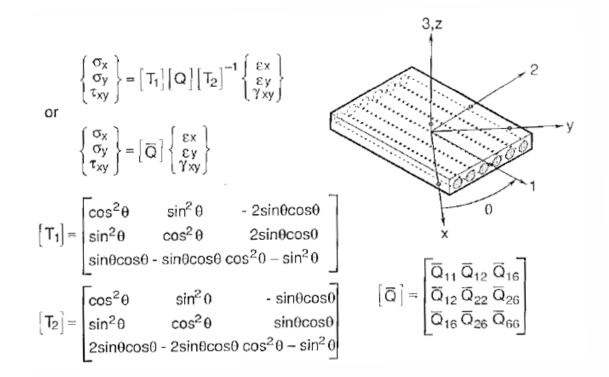


Previous Single Ply replaced by 0/90/-45/45/45/45/-45/90/0
 Maximum Strength is reduced, but now very predictable
 No Optimization! Sometimes called 'black' isotropic material

□ why 0/90/-45/45/45/-45/90/0 choice?

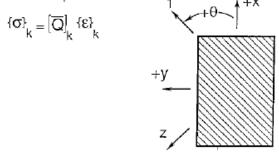
2. How do composites vary from metallic structures?

Overview of material properties and the ABD matrix terms. Hints on practical design methods.


$$\begin{bmatrix} \sigma_{1} \\ \sigma_{2} \\ \tau_{12} \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & O \\ Q_{12} & Q_{22} & O \\ O_{12} & O_{22} & Q_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \gamma_{12} \end{bmatrix}$$

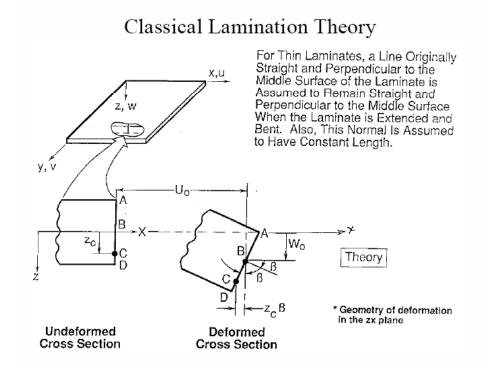
$$Q_{11} = \frac{E_1}{(1 - v_{12} v_{21})}, Q_{12} = \frac{v_{21} E_1}{(1 - v_{12} v_{21})} = \frac{v_{12} E_2}{(1 - v_{12} v_{21})}$$
$$Q_{22} = \frac{E_2}{(1 - v_{12} v_{21})}, Q_{66} = G_{12},$$

NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards



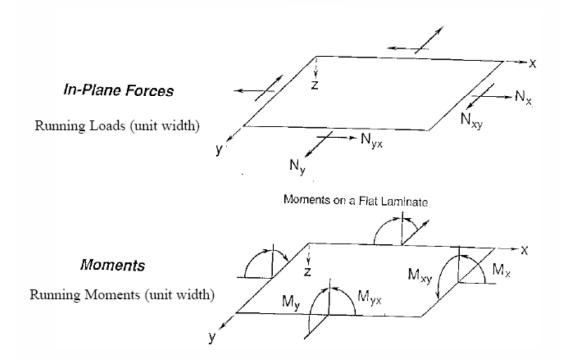
Overview of material properties and the ABD matrix terms. Hints on practical design methods.

For Arbitrary Coordinates, the Stress-Strain Relations for the Kth Layer of a Multilayered Laminate Are:


$$\begin{pmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{pmatrix}_{k} = \begin{bmatrix} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix}_{k} \begin{pmatrix} \epsilon_{x} \\ \epsilon_{y} \\ \gamma_{xy} \end{pmatrix}_{k}$$

or in Reduced Form

Overview of material properties and the ABD matrix terms. Hints on practical design methods.

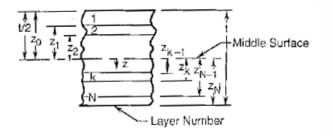

$$\begin{cases} \sigma_{X} \\ \sigma_{y} \\ \tau_{xy} \end{cases} = \begin{bmatrix} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix}_{K} \begin{cases} \varepsilon_{x^{\circ}} \\ \varepsilon_{y^{\circ}} \\ \gamma_{xy^{\circ}} \end{cases} + Z \begin{cases} K_{x} \\ K_{y} \\ K_{xy} \end{cases}$$

NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards

Overview of material properties and the ABD matrix terms. Hints on practical design methods.

NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards

Overview of material properties and the ABD matrix terms. Hints on practical design methods.


The Force and Moment Resultants for an N-Layered Laminate Is Given as,

$$\begin{cases} N_x \\ N_{xy}^y \\ N_{xy}^y \end{cases} = \int_{-t/2}^{t/2} \begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy}^y \end{cases} dz = \sum_{k=1}^n \int_{zk-1}^{zk} \begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy}^y \end{cases} dz$$

and

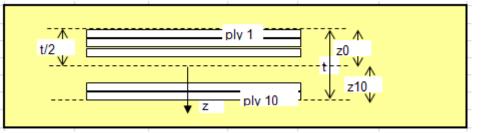
$$\begin{cases} M_{x} \\ M_{y}^{y} \\ M_{xy}^{y} \end{cases} = \int_{-t/2}^{t/2} \begin{cases} \sigma_{x} \\ \sigma_{y}^{y} \\ \tau_{xy} \end{cases} z dz = \sum_{k=1}^{n} \int_{zk-1}^{zk} \begin{cases} \sigma_{x} \\ \sigma_{y}^{y} \\ \tau_{xy} \end{cases} z dz$$

Where Z_k and Z_{k-1} Are Defined Below

Overview of material properties and the ARD matrix terms. Hints on prac

The stiffness matrix, \overline{Q}_{ij} , is constant within each lamina. Therefore, the stiffness matrix can go outside the integration over each layer, but is within the summation. Also, we recall that the strains and curvatures, ε_x° , ε_y° , γ_{xy}° , K_x , K_y , K_{xy} are middle surface values and are not functions of Z. Therefore, they can be removed from under both the integration and summation signs.

Overview of material properties and the ABD matrix terms. Hints on practical design methods.


$$\begin{split} & \sum_{\substack{Z_{k} \\ Z_{k+1} \\ Z_{k} \\ Z$$

NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards

Input Properties								
2.00E+07								
5.00E+05								
0.25								
2.50E+05								

LAYER ID	1	2	3	4	5	6	7	8
THETA	0	90	-45	45	45	-45	90	0
T PLY	1.20E-02							
N PLY	1	1	1	1	1	1	1	1
TOTAL T	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012

LAYER ID	1	2	3	4	5	6	7	8
THETA	0	90	-45	45	45	-45	90	0
T PLY	1.20E-02							
N PLY	1	1	1	1	1	1	1	1
TOTAL T	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012

AB D Matrix					
7.54E+05	2.43E+05	9.15E-14	-1.82E-12	1.00E-12	6.85E-13
2.43E+05	7.54E+05	2.88E-11	1.00E-12	2.76E-12	6.55E-13
9.15E-14	2.88E-11	2.55E+05	6.85E-13	6.55E-13	8.53E-13
-1.82E-12	1.00E-12	6.85E-13	9.15E+02	5.37E+01	-3.37E+01
1.00E-12	2.76E-12	6.55E-13	5.37E+01	5.10E+02	-3.37E+01
6.85E-13	6.55E-13	8.53E-13	-3.37E+01	-3.37E+01	6.29E+01

LAYER ID	1	2	3	4	5	6	7	8
THETA	90	0	45	-45	45	-45	90	0
T PLY	1.20E-02							
N PLY	1	1	1	1	1	1	1	1
TOTAL T	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012

AB D Matrix					
7.54E+05	2.43E+05	9.15E-14	2.81E+03	1.00E-12	-1.41E+03
2.43E+05	7.54E+05	2.88E-11	1.00E-12	-2.81E+03	-1.41E+03
9.15E-14	2.88E-11	2.55E+05	-1.41E+03	-1.41E+03	8.53E-13
2.81E+03	1.00E-12	-1.41E+03	7.12E+02	5.37E+01	3.64E-15
1.00E-12	-2.81E+03	-1.41E+03	5.37E+01	7.12E+02	4.14E-14
-1.41E+03	-1.41E+03	8.53E-13	3.64E-15	4.14E-14	6.29E+01

LAYER ID	1	2	3	4	5	6	7	8
THETA	90	30	45	-45	45	-45	0	30
T PLY	1.20E-02							
N PLY	1	1	1	1	1	1	1	1
TOTAL T	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012

AB D Matrix					
7.85E+05	3.30E+05	1.52E+05	8.62E+03	5.21E+02	-4.97E+02
3.30E+05	5.50E+05	5.14E+04	5.21E+02	-9.66E+03	-1.10E+03
1.52E+05	5.14E+04	3.42E+05	-4.97E+02	-1.10E+03	5.21E+02
8.62E+03	5.21E+02	-4.97E+02	6.52E+02	1.70E+02	2.04E+02
5.21E+02	-9.66E+03	-1.10E+03	1.70E+02	5.40E+02	6.91E+01
-4.97E+02	-1.10E+03	5.21E+02	2.04E+02	6.91E+01	1.79E+02

Introductory Composites FE Analysis Webinar

Agenda

1. What are composites?

Review of different forms and manufacturing processes.

2. How do composites vary from metallic structures?

Overview of material properties and the ABD matrix terms. Hints on practical design methods.

3. How do I set up a composite FEA?

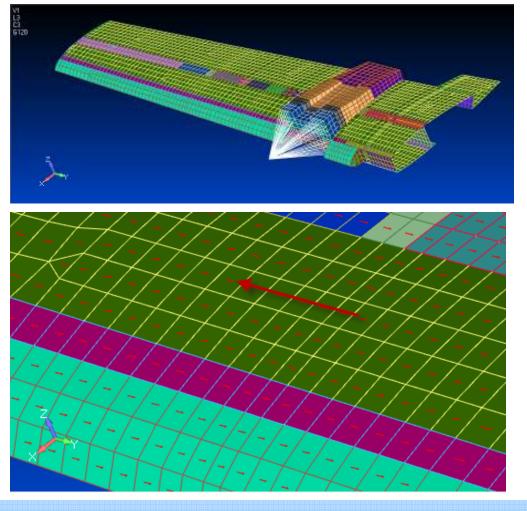
Overview of typical processes. Keeping track of plies, mold lines etc.

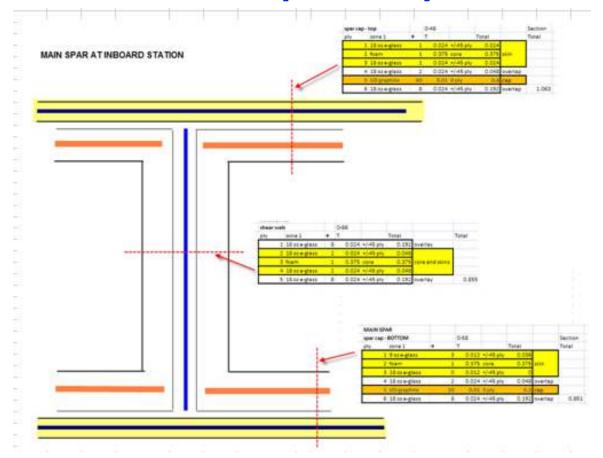
Overview of typical processes. Keeping track of plies, mold lines etc.

material property definitions

- Stiffness (E)		Shear (G)	Poisson Ra	itio(nu)
1 5600000. 2 1200000.		12 600000. 1z 600000. 2z 600000.	12 0.26	
-Limit Stress/Str		.imits Dir 2	Specific Heat, Cp Mass Density	0. 0.
Tension	154000.	4500.	Damping, 2C/Co	0.
Compression	88500.	17100.	Reference Temp	0.
Shear	1040	10.	Tsai-Wu Interaction	0.

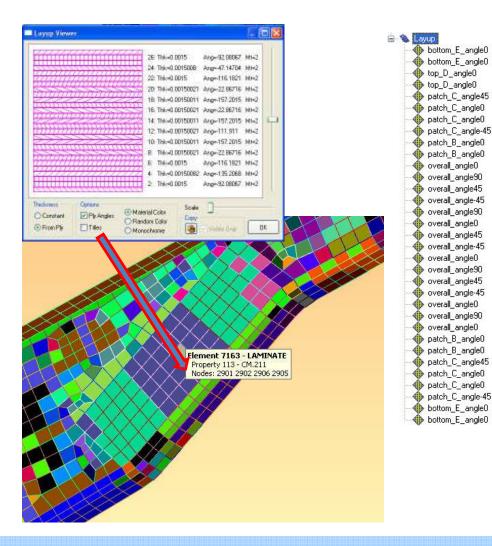
Component ply definitions


To	op of Layup 🚥	Total Thickness = 0.399					
Ply ID	Global Ply	Material	Thickness	Angle			
5		3one layer of glass fibe	0.006	45.			
4		3one layer of glass fibe	0.006	-45.			
3		2foam last-foam FR-4300	0.375	0.			
2		3one layer of glass fibe	0.006	-45.			
1		3one layer of glass fibe	0.006	45.			


Meshing

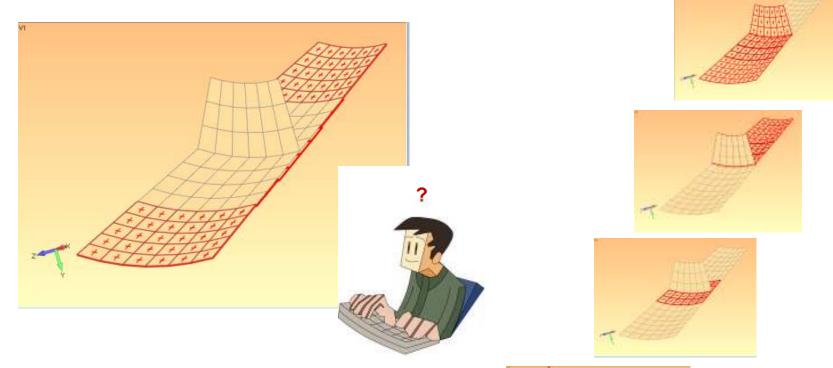
Setting up ply orientation

Clear strategy needed to control order of ply layup to represent manufacturing process

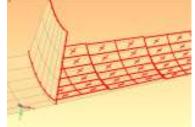

HAIN SPAR	0-48			MAIN SPAR	0-58		Section		SPAR	0-86					0-86			_
rpercep-top ly zone1 4		otal	Section Total	spar cap - BOTTOM ply zone1 \$	0-58 T	Total	Total	sheer		0-86 \$ T	Total	Total	uing skin	ane 1	0-86			_
	1 0.020 +/-45 ph		10441		1 0.02 +/-45		i Beal	ply			iply 0.192 overlay	1 Beal		ane i az etalarz				-
	1 0.020 +7-45 pls	0.02			1 0.02 +7-45					2 0.024 +7-45		-		az orgiars az orgiars			0.04	
2 9 oz orgiars 3 foam	1 0.010 +7-45 pt) 1 0.375 cpre	0.01 0.375 zkin			1 0.375 core				2 18 oz orgiars 3 foam	2 0.024 +7-45 1 0.375 cpre			2 9 3 fe		1 0.01		0.01	
												N					0.375 core andski	ind ind
	1 0.020 +/-45 ply	0.02			1 0.01 +/-45					2 0.024 +/-45				ax orglars	1 0.01	+7-45 ply	0.01	_
	2 0.020 +/-45 pl)		ap		2 0.02 +/-45		ap				iply 0.192 averlay	0.85	5		_			-
	40 0.010 0 ply	0.4 cap			0.01 0.1			ply	zone 2	86-108		_			_			0
	8 0.020 +/-45 ply	0.16 averl	ap 1.025	7 18 az orgiars	8 0.02 +/-45	ply 0.16 aver	ap 0.815											
zano 2	48-60			zano 2	58-74						iply 0.168 averlay	_						
	1 0.020 +/-45 ply	0.02			1 0.02 +7-45					2 0.024 +7-45								
	1 0.010 +/-45 ply	0.01			1 0.01 +7-45					1 0.375 care		ni i						
3 foam	1 0.375 care	0.375 skin			1 0.375 core					2 0.024 +/-45								
4 9 ax orglars	1 0.020 +/-45 ply	0.02		4 9 az orgiarz	1 0.01 +/-45	ply 0.01					iply 0.168 overlay	0.80	7					
5 18 az o-glars	2 0.020 +/-45 ply	0.04 averl	ap	5 18 az orgiarz	2 0.02 +/-45	ply 0.04 aver	ap	ply	zone 3	108-130								
6 UD graphit (36 0.010 0 ply	0.36 cap		6 UD graphit 1	16 0.01 0 pl	0.16 cap			1 18 ax o-glars	6 0.024 +/-45	iply 0.144 averlay							
7 18 az o-glars	8 0.020 +/-45 ply	0.16 averl	ap 0.985	7 18 ox orgians	8 0.02 +/-45	ply 0.16 aver	ap 0.775											
zone3	60-74			zone 3	74-86				2 18 px orglars	2 0.024 +/-49	ply 0.048							
1 18 az englarz	1 0.020 +/-45 ply	0.02		1 18 pz orgiars	1 0.02 +/-45	ply 0.02			3 foam	1 0.375 core	0.375 care and sk	na i						
2.9 ax orglars	1 0.010 +/-45 ply	0.01		2 9 nx orglars	1 0.01 +/-49	ply 0.01			4 18 pz orglarz	2 0.024 +/-45	iply 0.048							
3 foam	1 0.375 core	0.375 skin		3 foam	1 0.375 core	0.375 skin			5 18 az o-glars	6 0.024 +7-45	iply 0.144 averlay	0.75	9					
4 9 az englarz	1 0.020 +/-45 pls	0.02		4 9 pz orglasz	1 0.01 +7-45	pls 0.01		ply	zone 4	130-53								
5 18 az o-glarr	2 0.020 +/-45 ply	0.04 averl	ap	5 18 az e-glars	2 0.02 +/-45	ply 0.04 aver	ap		1 18 pz orglars	5 0.024 +/-45	iply 0.12 averlay							
	32 0.010 0 ply	0.32 cap			2 0.01 0.1					2 0.024 +/-45								
	8 0.020 +/-45 ply	0.16 overl	ap 0.945	7 18 px o-glars	8 0.02 +/-45	ols 0,16 over	ap 0.735											
zone 4	74-86			zone 4	86-92				3 faam	1 0.375 care	0.375 care and sk							
1 18 px orglars	1 0.020 +/-45 pb	0.02		1 18 px englars	1 0.02 +/-45	ph 0.02			4 18 px orglars	2 0.024 +/-49	ols 0.048							
2 9 nz e-alarz	1 0.010 +/-45 pb	0.01		2 9 az orglarz	1 0.01 +/-45	ols 0.01			5 18 nx o-alars	5 0.024 +/-45	ply 0.12 overlay	0.71	1					_
		0.375 zkin			1 0.375 core	0.375 zkin		ply	zone 5	153-180								
	1 0.020 +/-45 ph	0.02			1 0.01 +/-45						iply 0.096 averlay				_			_
	2 0.020 +/-45 ply				2 0.02 +/-45		an			2 0.024 +/-45								-
	28 0.010 0.017		ap.	6 UD graphit						1 0.375 core					_			-
	8 0.020 +/-45 ply		ap 0.905		6 0.02 +/-45		. 0.695		o roam	1 0.515 care	0.515 care anare	·						
1 10 0 2 0- q1 0/2	86-88	0.10 80011	ap 0.703	1 10 82 8- 91 435	92-108	0.12 8001	lap 0.075	_	4.49	2 0.024 +/-45	-1. 0.049				_			_
	1 0.020 +/-45 ply	0.00			1 0.02 +/-45						iply 0.096 averlay	0.66			_			_
	1 0.020 +/-45 ph	0.02			1 0.02 +7-45				zone 6	4 0.024 +7-4:	pi) 0.076 Boorlay	0.66	2					
2 9 oz orgiarz 3 foam		0.01 0.375 zkin			1 0.375 core						ply 0.072 overlay							-
	1 0.020 +/-45 ph	0.02			1 0.01 +/-45													
			_				_		2 18 oz orgiars 3 foam	2 0.024 +/-45								_
	2 0.020 +/-45 ply		ap		2 0.02 +/-45		ap					M						_
		0.28 cap							4 18 nz orgiars	2 0.024 +/-45	pl) 0.048	_						_
	7 0.020 +/-45 ply	0.14 averl	ap 0.885		6 0.02 +/-45	ply 0.12 aver	ap 0.655						_					_
	88-102		_	zone 6	108-112		_				iply 0.072 avorlay	0.61	5		_			_
	1 0.020 +/-45 ply				1 0.02 +/-45				zone7	202-288		_			_			_
	1 0.010 +/-45 ply				1 0.01 +/-45						iply 0.048 overlay	_			_			
	1 0.375 care	0.375 zkin			1 0.375 care					2 0.024 +7-45								
	1 0.020 +/-45 ply	0.02			1 0.01 +7-45					1 0.375 care		ru -						
	2 0.020 +/-45 ply	0.04 averl	ap	5 18 az orglarz	2 0.02 +7-45		ap			2 0.024 +7-45								
6 UD graphit	24 0.010 0 ply	0.24 cap		6 UD graphit	8 0.01 0 pl	0.08 cap			5 18 az o-glars	2 0.024 +/-45	ply 0.048 avorlay	0.56	7					

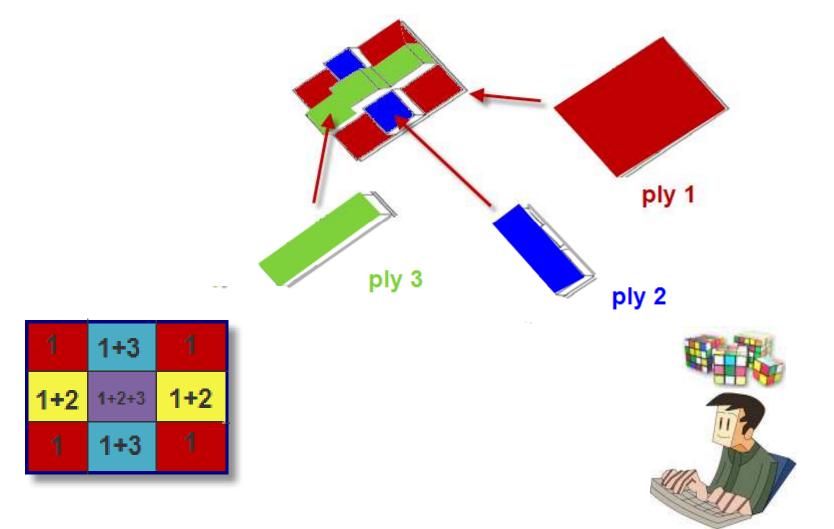
Good book keeping is essential !

- Either via spreadsheet
- Or FE software tools



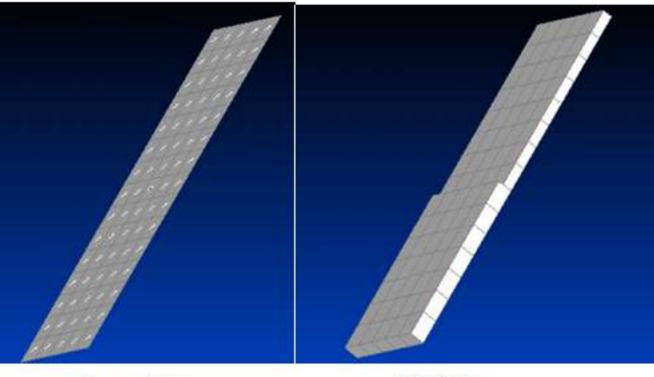
Layer	Name	Orientation	Material	Global ID	Applic, C	ode	Angle Offsel
1	bottom_E_angle0	0	skin300gm	0	Original	~	0.0
2	bottom_E_angle0	0	skin300gm	0	Original	¥	0.0
3	top_D_angle0	0	skin300gm	0	Original	~	0.0
4	top_D_angle0	0	skin300gm	0	Original	¥	0.0
5	patch_C_angle45	45	skin300gm	0	Original	~	0.0
6	patch_C_angle0	0	skin300gm	0	Original	¥	0.0
7	patch_C_angle0	0	skin300gm	0	Original	¥	0.0
8	patch_C_angle-45	-45	skin300gm	0	Original	~	0.0
9	patch_B_angle0	0	skin300gm	0	Original	~	0.0
10	patch_B_angle0	0	skin300gm	0	Original	¥	0.0
11	overall_angle0	0	skin300gm	0	Original	¥	0.0
12	overall_angle90	90	skin300gm	0	Original	*	0.0
13	overall_angle45	45	skin300gm	0	Original	~	0.0
14	overall_angle-45	-45	skin300gm	0	Original	*	0.0
15	overall_angle90	90	skin300gm	0	Original	¥	0.0
16	overall_angle0	0	skin300gm	0	Original	~	0.0
17	overall_angle45	45	skin300gm	0	Original	~	0.0
18	overall_angle-45	-45	skin300gm	0	Original	*	0.0
19	overall_angle0	0	skin300gm	0	Original	~	0.0
20	overall_angle90	90	skin300gm	0	Original	Y	0.0
21	overall_angle45	45	skin300gm	0	Original	~	0.0
22	overall_angle-45	-45	skin300gm	0	Original	*	0.0
23	overall_angle0	0	skin300gm	0	Original	¥	0.0
24	overall_angle90	90	skin300gm	0	Original	~	0.0
25	overall_angle0	0	skin300gm	0	Original	~	0.0
26	patch_B_angle0	0	skin300gm	0	Original	¥	0.0
27	patch_B_angle0	0	skin300gm	0	Original	~	0.0


NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards


Visualization and control of components and layups is essential in the pre-processor

NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards

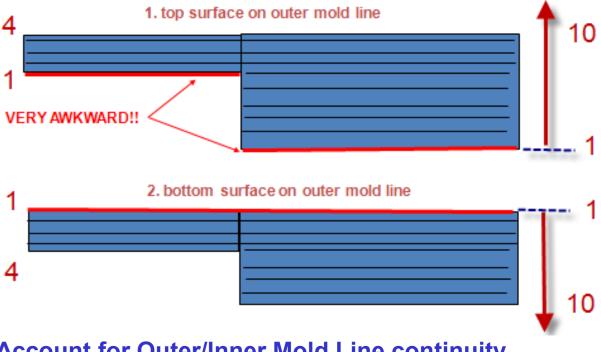
NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards


Composites E-Learning Course

V1.0 Page 56

FEA Process for Composite Structure Analysis

planar view


3D view

Account for Outer/Inner Mold Line continuity

Account for Outer/Inner Mold Line continuity

- **Orientate element normal**
- Use global ply ids if available ٠

NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards

Introductory Composites FE Analysis Webinar

Agenda

4. How good is my FEA idealization?

The importance of fiber orientation, draping and thickness effects.

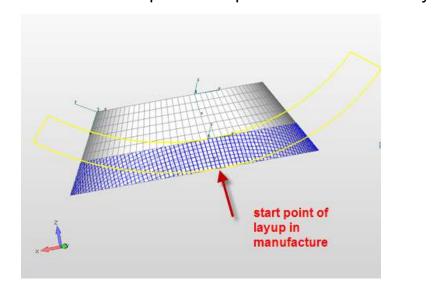
5. How do I know whether the composite has failed?

Basic First Ply failure theories

6. How do I organize my results, where do I start looking?

Failure indices, Strength ratios.

The importance of fiber orientation, draping and thickness effects.


As a ply is draped over a mold it will align the fibers into a net like pattern.

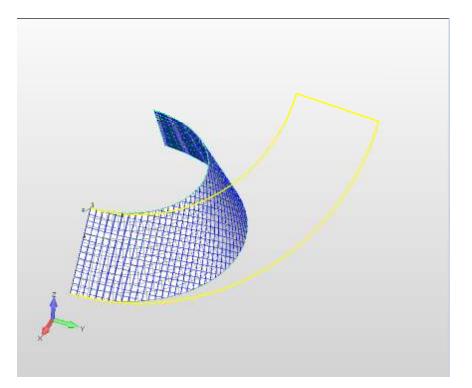
Each fiber would ideally like to form an minimum energy path, rather like a great circle on a globe.

The presence of the adjacent fibers, both in the same ply and throughout the lay up will inhibit this action.

• Two sections of cloth are shown draped over a conical shape.

The flat pattern required to achieve the lay up geometry is shown

NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards

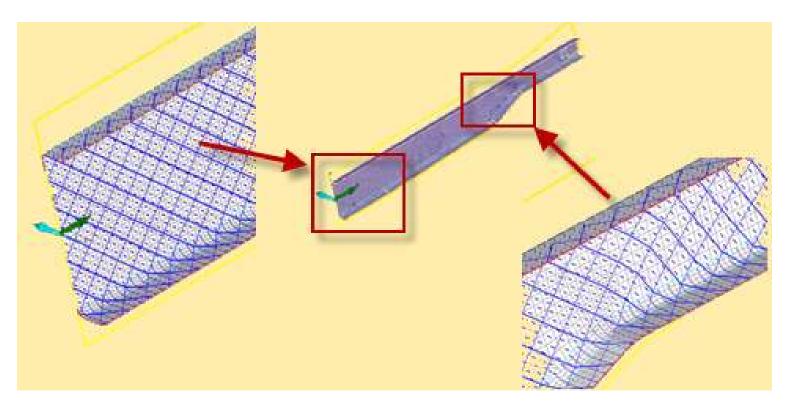


The importance of fiber orientation, draping and thickness effects.

Here is an alternative manufacturing solution

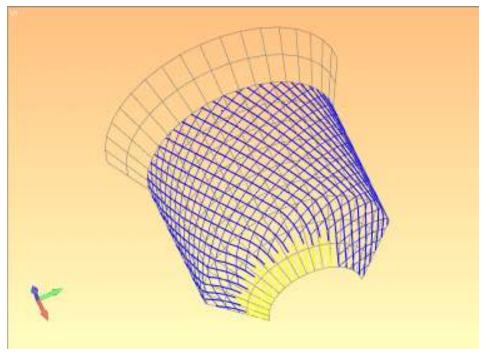
- The layup is orientated to run along one edge
- The flat pattern adjusts to suit
- Notice the drift in angle as we go round the cone

Mapping the change in fiber orientation onto the FE mesh is important

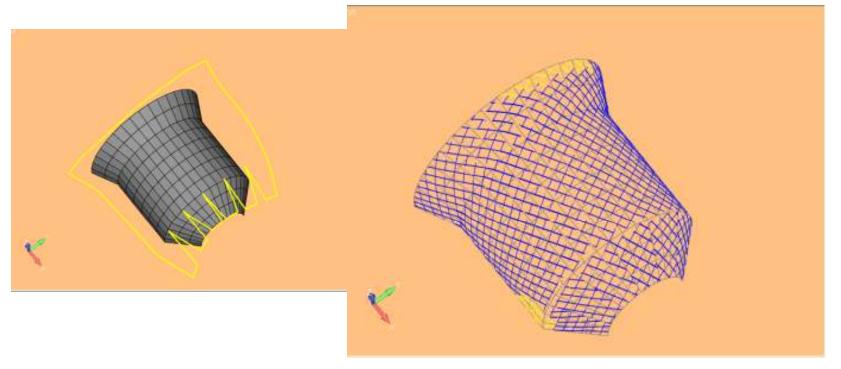

			Model Info		4 x Unit	lend .	
			SE S + S S ↓ Coordinate S Germetry S ⊕ Genetry S ⊕ Model S ⊕ Model S ⊕ Frepedi L 1.00 L 2.00 L 3.00 S ↓ Water S ⊕ S ↓ 00 S ↓ 00	Systems s s s s s s s s s s s s s s s s s s	N12B		
T	op of Layup		otal Thickness = (•	120456	
T Ply ID	op of Layup Global Ply		æ 🔮 Loods			124/56	
Ply ID 6		1	otal Thickness = (0.36		12456	
Ply ID		T Material	otal Thickness = ().36 Angle		12456	
Ply ID 6 5 4		T Material 1test data	otal Thickness = (Thickness 0.06	0.36 Angle -92.98147		12458	
Ply ID 6 5 4 3		T Material 1test data 1test data	otal Thickness = (Thickness = (0.06 0.06 0.06 0.06 0.06	0.36 Angle -92.98147 -2.981458 -137.9815 -47.98147		1248	
Ply ID 6		1 Material 1test data 1test data 1test data	otal Thickness = (Thickness 0.06 0.06 0.06	0.36 Angle -92.98147 -2.981458 -137.9815		1248	

Here is a section of an aircraft fuselage

The drift in the ply angles can be seen in the lay up data table

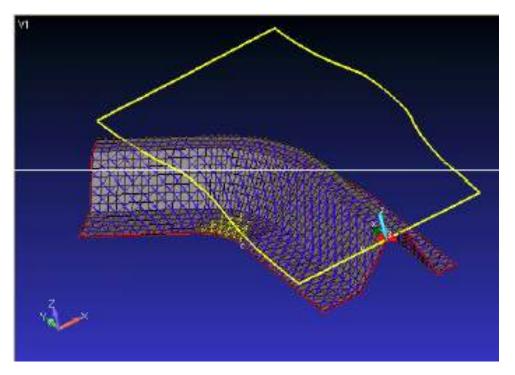


The draping around the neck of this component can be clearly seen


Feasible draping angles depend on the shearing stiffness of the ply as it is laid over the mold.

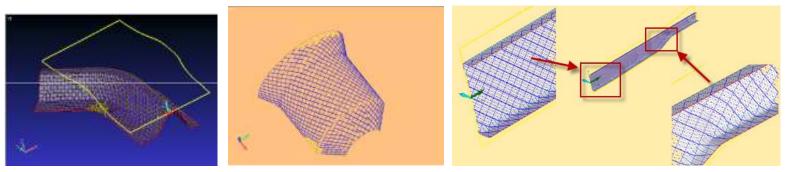
This will depend on the type of ply – pre-preg or cloth and its mechanical characteristics

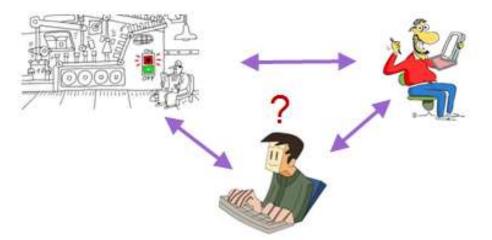
Most draping tools will allow the visualization of regions where the shearing action of the layup process is reaching practical limits, or where it is infeasible.



Here the analyst has introduced darts into the draping pattern to reduce the shearing action

Note the discontinuous plies




Here the analyst has forced the fibers to follow the flat cap of the stiffener

This could be a specific design intent, or it may follow the known pattern of a pultrusion or molding

For this type of FE software to be effective

- the analyst must be in the loop!

Introductory Composites FE Analysis Webinar

Agenda

4. How good is my FEA idealization?

The importance of fiber orientation, draping and thickness effects.

5. How do I know whether the composite has failed?

Basic First Ply failure theories

6. How do I organize my results, where do I start looking?

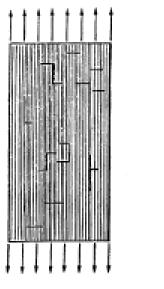
Failure indices, Strength ratios.

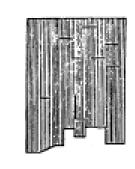
Basic First Ply failure theories

The initial approach we take in FEA analysis is to assume that as soon as a composite strength value is exceeded by the stress level present, then the structure has failed, or at least is not fit for further service.

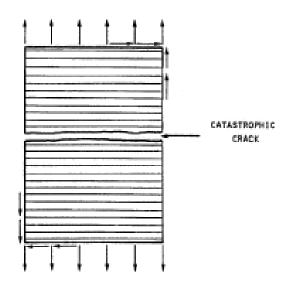
This approach is called First Ply Failure mode .

However, it is a far from trivial task to establish the strength of a composite material.


Unlike isotropic materials the strength is dependent on the directional properties of an individual ply, which can vary longitudinally, transversely and in shear, and may well be different between tension and compression.

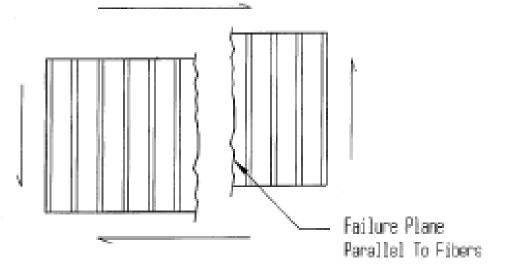

In addition the ply layup will also control the strength

A great deal of research has been carried out to try to understand the failure mechanisms of a ply


Probably the most intuitive ply failure mode is in tension. The sketch shows a typical failure appearance.

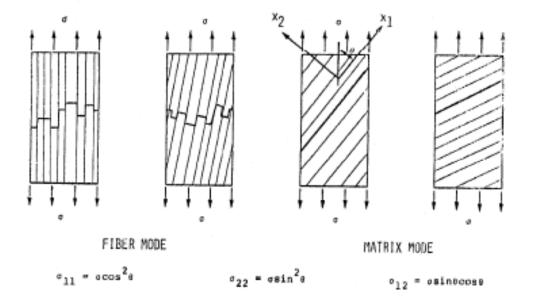
At the microscopic level there is a lot happening, with fiber pull out, fiber breaking and matrix cracking.

However the strength under this loading condition is repeatable for a given as supplied condition within a statistical variation.



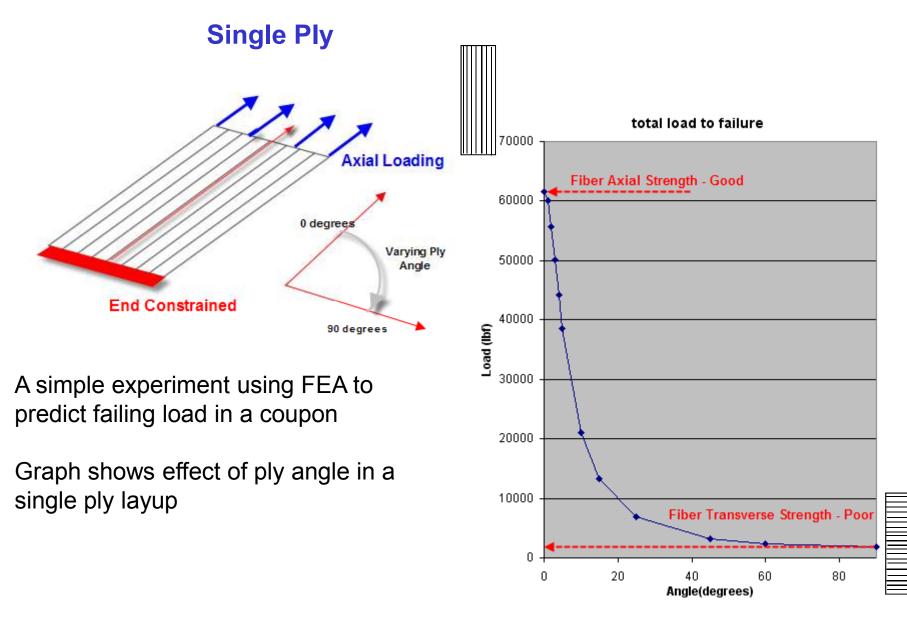
Similarly the transverse tension is dominated by the strength of the matrix

The microscopic level sees a surprisingly complex behavior with the fibers acting as stress raisers in the matrix stress field.


The failure under in plane shear can be assumed as a shear line failure along the matrix

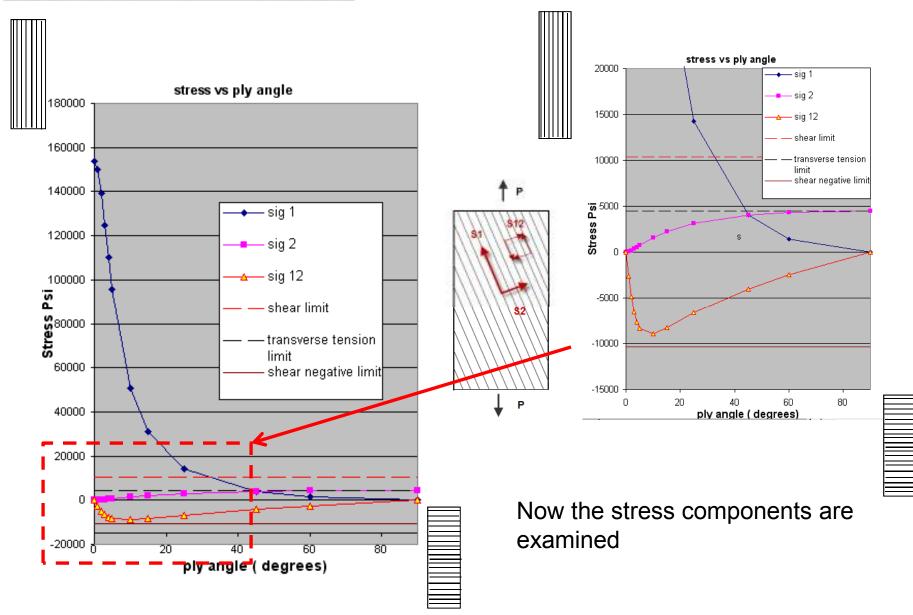
Again at a microscopic level the behavior is more complex with local cracking behavior building to a total failure

5. How do I know whether the composite has failed?



However, in general in the tensile loading quadrant defined by both longitudinal and transverse tension is relatively straight forward

Shear will play a strong role for all off axis loading directions.

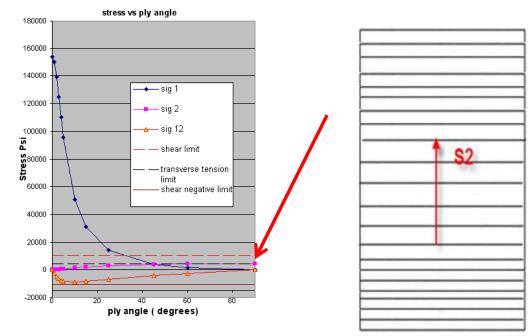

NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards

Composites E-Learning Course

V1.0 Page 74

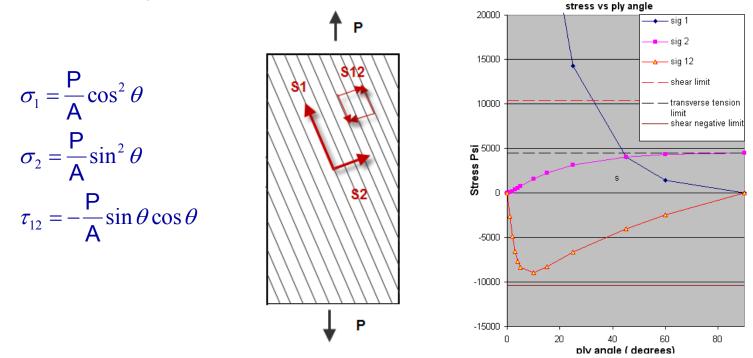
e-learning

Ply Angle 0 degrees


- full allowable axial **fiber/matrix** stress is obtained, 154,000 psi (1063MPa)
- This is a **fiber** failure mode
- fibers are carrying the load in the most favorable, axial direction
- resin is acting to stabilize the fibers, and not carrying any significant load (although resin does provide bridging mechanism for fiber gaps or breaks)
- apart is ze transverse stress that will tend to stress vs ply angle • 14000 🔶 sig 1 shear stress is zero • 120000 sig 2 - sig 12 10000 shear limit Stress 80000 limit ply angle (degrees)

Ply Angle 90 degrees

- transverse properties of the material resisting the load
- transverse tension allowable is only 4,500 PSI (31 MPa) , based mainly on matrix tensile strength **matrix failure**
- (interestingly the fibers act as stress raisers in practice in the resin, so tensile strength is less than matrix alone)



0 -> degrees

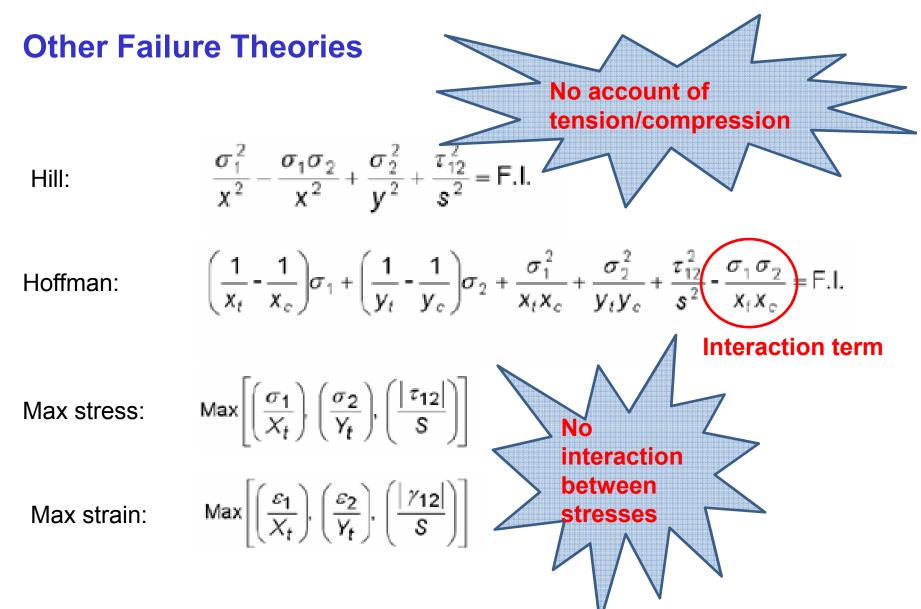
- even a few degrees from zero strength drops off rapidly
- At 10 degrees the stress at failure is down to just over 40,000 psi (276 MPa)
- fibers are now subjected to transverse stresses, fibers and the resin have to balance the applied stress state
- weaker transverse strength of the resin reduces the strength. longitudinal, transverse and shear stresses present
- 5-20 degrees shear dominates
- 30-90 degrees transverse dominates

How did we predict the strength of the single ply?

• A **failure theory** analogous to Von Mises stresses for Isotropic materials is used to predict failure

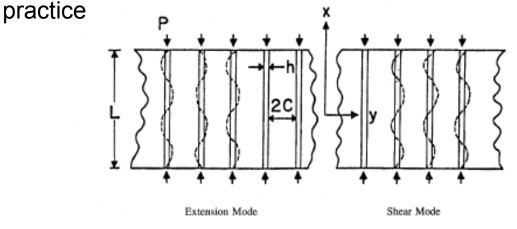
• Many failure theories exist, just using one here:

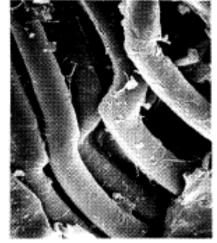
Tsai-Wu Failure Theory


$$\left(\frac{1}{x_t} - \frac{1}{x_c}\right)\sigma_1 + \left(\frac{1}{y_t} - \frac{1}{y_c}\right)\sigma_2 + \frac{\sigma_1^2}{x_t x_c} + \frac{\sigma_2^2}{y_t y_c} + \frac{\tau_{12}^2}{s^2} + 2F_{12}\sigma_1\sigma_2 = F.I.$$

- Xt tension limit, along fiber
- Xc compression limit, along fiber
- Yt tension limit, transverse fiber
- Yc compression limit, transverse fiber
- S shear limit
- F12 interaction term

Failure Index > 1.0 is bad news



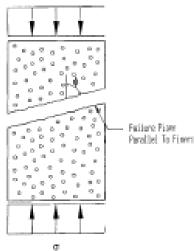

Other failure modes

As soon as the composite is put into compression then a rather different type of behavior occurs.

For **longitudinal compression** various local buckling and shear models have been suggested. The relative stiffness of the fiber and matrix is important as well as the spacing of the fibers and geometry within the matrix.

The sketch shows two local buckling forms and the photo shows evidence in

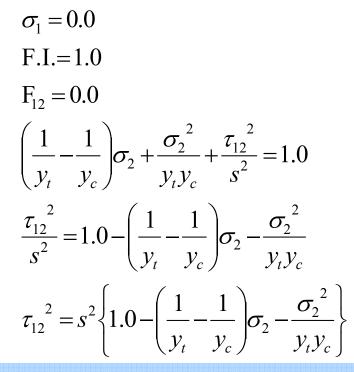
NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards



5. How do I know whether the composite has failed?

Transverse compression is interesting because the strength is generally higher the transverse tension. The matrix tends to act to stabilize the fibers until some form of shear cracking occurs.

This behavior is not well understood in general and is the subject of much manipulation of the failure theories. As is shown on the next few slides the behavior is broken out as a separate phenomenon in some theories.


Tsai – Wu Explored

$$\left(\frac{1}{x_t} - \frac{1}{x_c}\right)\sigma_1 + \left(\frac{1}{y_t} - \frac{1}{y_c}\right)\sigma_2 + \frac{\sigma_1^2}{x_t x_c} + \frac{\sigma_2^2}{y_t y_c} + \frac{\tau_{12}^2}{s^2} + 2F_{12}\sigma_1\sigma_2 = F.I.$$

Consider stress state with no axial (with fiber) stress

Strengths

Establish	locus	of	failure	stress	

Coupon test	PSI	Мра	
xt	154,000	1062	
хс	88,500	610	
yt	4,500	31	
ус	17,100	118	
s	10,400	72	

Hill Explored

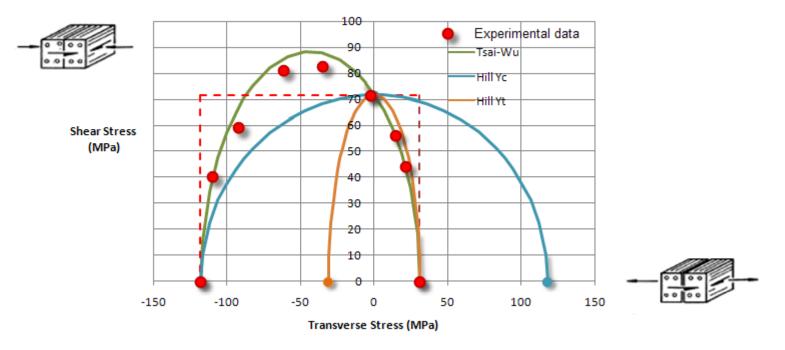
$$\frac{\sigma_1^2}{x^2} - \frac{\sigma_1\sigma_2}{x^2} + \frac{\sigma_2^2}{y^2} + \frac{\tau_{12}^2}{s^2} = F.I.$$

Consider stress state with no axial (with fiber) stress

Establish locus of failure stress

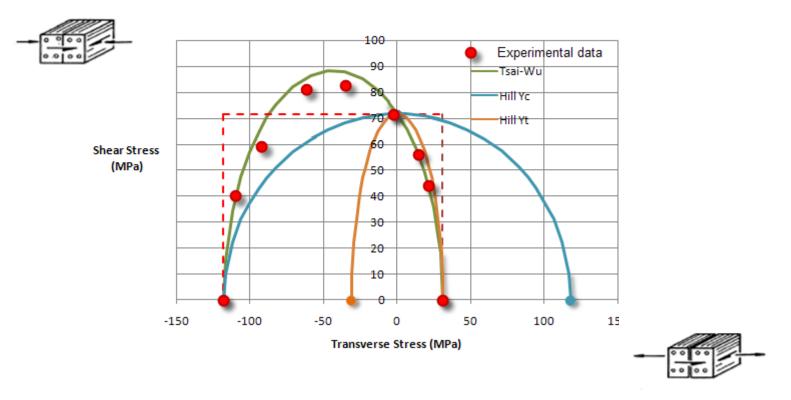
$$\sigma_1 = 0.0$$

F.I. = 1.0


$$\frac{\sigma_2^2}{y^2} + \frac{\tau_{12}^2}{s^2} = 1.0$$
$$\frac{\tau_{12}^2}{s^2} = 1.0 - \frac{\sigma_2^2}{y^2}$$
$$\tau_{12}^2 = s^2 \left\{ 1.0 - \frac{\sigma_2^2}{y^2} \right\}$$

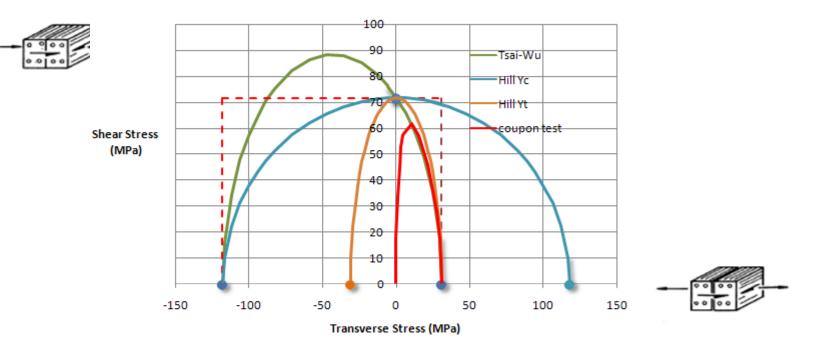
Strengths

Coupon test	PSI	Мра	
xt	154,000	1062	
хс	88,500	610	
yt	4,500	31	
ус	17,100	118	
s	10,400	72	


This stress state zone is of great interest as it involves complex failure modes

On our test with 5 degrees off axis and higher $\sigma_1 \rightarrow 0.0$ MPa

- Tsai-Wu shows the effect of interaction when shear and compressive transverse stresses combine.
- Experimental evidence tends to confirm that Tsai-Wu predictions modify the simple stress limit values



Hill shows the limitation when the same strengths are used in Tension and Compression for transverse strength

Experimental evidence shows a clear bias in the strength allowables and this affects the interaction

For the FEA results using the Tsai-Wu criteria we can see the results for ply off axis > 10 degrees fit well into this reduced envelope as the axial stresses tend to zero.

In this case either Hill using transverse tension allowable, or Tsai-Wu would give the same results, which is intuitively correct.

We need to be aware that more complex loading states will not 'fit' Hill well.

The Tsai-Wu, Hill and Hoffman failure theories are just one of many that were developed using know failure points and then interpolating in stress space using quadratic relationships

One of the limitations of this approach is that all failure is based on a full and continuous interaction between stress states.

It has been found experimentally that failure modes tend to be dominated by either fiber failure modes or matrix failure. There may be little interaction between them.

The continuous quadratic family of theories do not differentiate between these fundamental failure modes.

A class of failure theories has evolved which are sometimes described as 'phenomenological' to indicate the nature of the failure is implicit in the theory

Hashin-Rotem failure criteria breaks up the assessment of failure into several sub criterion:

Tensile Fiber Failure:

$$\left(\frac{\sigma_1}{X_t}\right)^2 + \left(\frac{\tau_{12}}{S_{12}}\right)^2 = 1$$

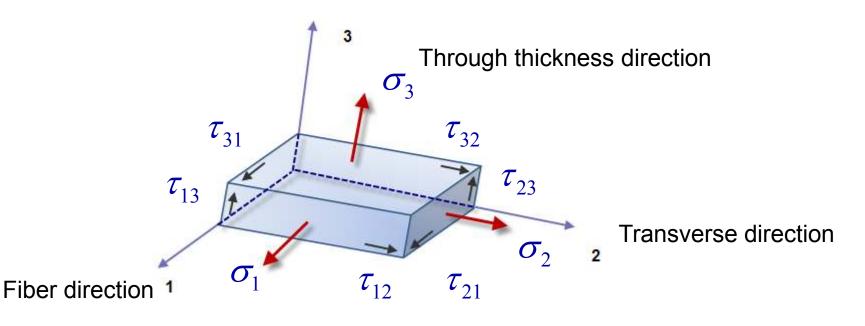
Compressive fiber failure:

$$\left(\frac{\sigma_1}{X_c}\right)^2 = 1$$

Tensile Matrix failure:

$$\left(\frac{\sigma_2}{Y_t}\right)^2 + \left(\frac{\tau_{12}}{S_{12}}\right)^2 = 1$$

$$\left(\frac{\sigma_2}{2S_{23}}\right)^2 + \left[\left(\frac{Y_c}{2S_{23}}\right)^2 - 1\right]\frac{\sigma_2}{Y_c} + \left(\frac{\tau_{12}}{S_{12}}\right)^2 = 1$$



Through thickness failure

$$\left(\frac{\sigma_3}{Z_t}\right)^2 + \left(\frac{\tau_{23}}{S_{23}}\right)^2 + \left(\frac{\tau_{31}}{S_{31}}\right)^2 = 1$$

Note that additional Stress and Strength definitions are made:

NAFEMS

Failure Index

1.000

1.011

1.035

1.054

1.059

1.033

0.855

0.675

0.419

0.150

0.057

0.000

matrix

0.000

0.063

0.220

0.402

0.562

0.674

0.870

0.888

0.948

0.971

1.000

Theta fiber

15

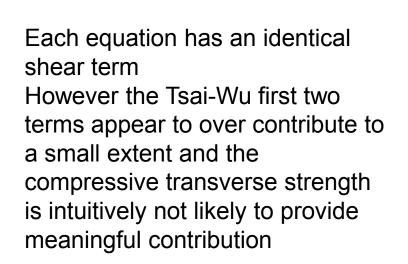
25

45

60 90

Advanced failure modes:

Each mode is assessed to see which has the highest failure index above 1.0, and hence which prompts the failure

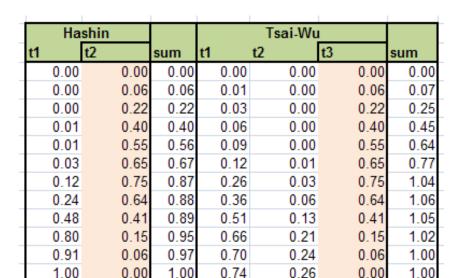

For our coupon we will ignore through thickness failure and assume inter laminar shear strength equals in plane shear strength: $S_{23} = S_{12}$

Only tensile axial stresses are present, and only tensile transverse stresses so only those two terms are considered

The results show that the two failure modes are clearly defined

- Fiber failure occurs up to at least 5 degrees off axis
- Matrix failure occurs somewhere before 10 degrees and continues to 90
- There is a very small reduction in failing load for the matrix failure

It is interesting to compare the terms of the two failure criterion when the axial stresses are low and matrix failure is assumed to dominate

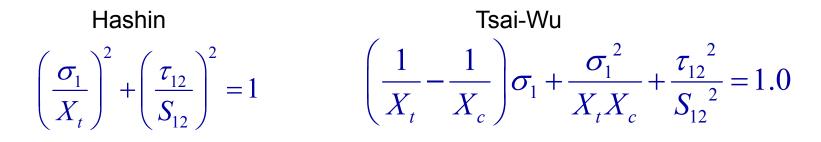


Hashin

 $\left(\frac{\sigma_2}{Y}\right)^2 + \left(\frac{\tau_{12}}{S_{12}}\right)^2 = 1.0$

e-lfarni

$$\left(\frac{1}{y_t} - \frac{1}{y_c}\right)\sigma_2 + \frac{{\sigma_2}^2}{y_t y_c} + \frac{{\tau_{12}}^2}{S_{12}^2} = 1.0$$


Tsai-Wu

Similarly if the transverse stress is ignored in the fiber failure region the equations can be compared

Note the Hashin method re-uses the shear term. The Tsai –Wu method cannot do this as it is continuous with no distinction. It is added here for comparison.

The Tsai-Wu direct terms are a balancing act and again there is no intuitive feel for their individual contributions In both methods the shear term extends the domain of the pure fiber failure mode

Hashin			Tsai-Wu			
t1	t2	sum	t1	t2	t3	sum
1.00	0.00	1.00	-0.74	1.74	0.00	1.00
0.95	0.06	1.01	-0.72	1.65	0.06	0.99
0.82	0.22	1.04	-0.67	1.42	0.22	0.97
0.66	0.40	1.05	-0.60	1.15	0.40	0.94
0.51	0.55	1.06	-0.53	0.89	0.55	0.91
0.39	0.65	1.03	-0.46	0.67	0.65	0.86
0.11	0.75	0.86	-0.24	0.19	0.75	0.69
0.04	0.64	0.68	-0.15	0.07	0.64	0.56
0.01	0.41	0.42	-0.07	0.01	0.41	0.36
0.00	0.15	0.15	-0.02	0.00	0.15	0.13
0.00	0.06	0.06	-0.01	0.00	0.06	0.05
0.00	0.00	0.00	0.00	0.00	0.00	0.00

Hashin Explored

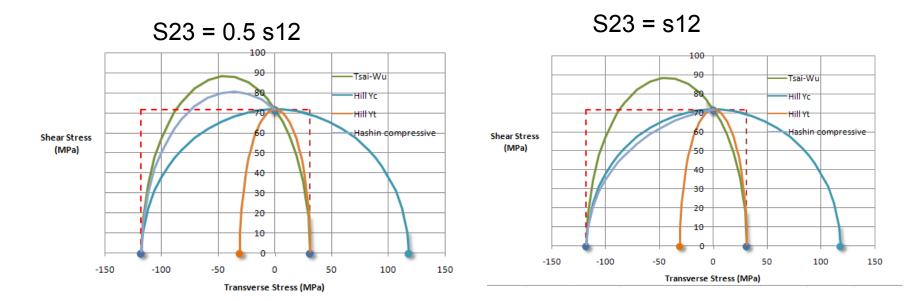
Compressive Matrix failure

Consider stress state with no axial (with fiber) stress (implicit in matrix compressive term)

Establish locus of failure stress

Strengths

Coupon test	PSI	Мра	
xt	154,000	1062	
хс	88,500	610	
yt	4,500	31	
ус	17,100	118	
s	10,400	72	


$$\mathsf{F.I.} = 1.0 \qquad \left(\frac{\sigma_2}{2S_{23}}\right)^2 + \left[\left(\frac{Y_c}{2S_{23}}\right)^2 - 1\right]\frac{\sigma_2}{Y_c} + \left(\frac{\tau_{12}}{S_{12}}\right)^2 = 1$$
$$\left(\frac{\tau_{12}}{S_{12}}\right)^2 = 1 - \left(\frac{\sigma_2}{2S_{23}}\right)^2 - \left[\left(\frac{Y_c}{2S_{23}}\right)^2 - 1\right]\frac{\sigma_2}{Y_c}$$
$$\tau_{12}^2 = S_{12}^2 - \left(\frac{S_{12}\sigma_2}{2S_{23}}\right)^2 - \left[\left(\frac{Y_c}{2S_{23}}\right)^2 - 1\right]\frac{\sigma_2 S_{12}^2}{Y_c}$$

To better understand the failure Hashin failure mode in compression the failure locus under transverse stress and shear stress has been added to the Hill and Tsai-Wu curves

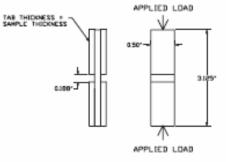
$$\tau_{12}^{2} = S_{12}^{2} - \left(\frac{S_{12}\sigma_{2}}{2S_{23}}\right)^{2} - \left[\left(\frac{Y_{c}}{2S_{23}}\right)^{2} - 1\right]\frac{\sigma_{2}S_{12}^{2}}{Y_{c}}$$

Test data

Strength data is available from suppliers, but needs to treated with caution

Test data costs a lot of resource to compile and is not widely available in industry

Academic papers and text books tend to contain useful data


Test if you can afford it, but is a complex process

PHYSICAL PROPERTY	TEST METHOD	NOMINA	LULTIMATE	VALUES
Foam Density	ASTM D-1622	5.0 PCF	10.0 PCF	15.0 PCF
Compressive Strength, 75°F	ASTM D-1621			
Parallel to Rise		119 psi	300 psi	514 psi
Perpendicular to Rise		113 psi	257 psi	414 psi
Compressive Modulus, 75°F	ASTM D-1621			
Parallel to Rise		4,613 psi	11,906 psi	20,732 psi
Perpendicular to Rise		2,180 psi	7,098 psi	14,159 psi
Compressive Strength, 160°F	ASTM D-1621			
Parallel to Rise		99.8 psi	230 psi	375 psi
Perpendicular to Rise		56.2 psi	176 psi	342 psi
Compressive Modulus, 160°F	ASTM D-1621			
Parallel to Rise		2,940 psi	9,506 psi	18,874 psi
Perpendicular to Rise		1,038 psi	4,114 psi	9,204 psi
Shear Strength, 75°F	ASTM C-273			
Parallel to Rise		126 psi	268 psi	417 psi
Shear Modulus, 75°F	ASTM C-273			
Parallel to Rise		1,439 psi	3,434 psi	5,711 psi
Friability (% Weight Loss)	ASTM C-421	0.12	0.10	0.07
Flame Resistance	FAR 25.853 (a) & (b)	Pass	Pass	Pass
	BSS 7230 F1 & F2	Pass	Pass	Pass
	MIL-P-26514F	Pass	Pass	Pass

NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards

Figure 4-10 Test Specimen Configuration for ASTM D-3039 and D-638 Tensile Tests (Structural Composites, Inc.)

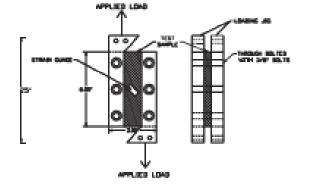
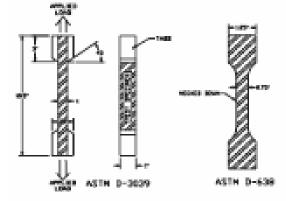



Figure 4-17 Test Specimen Configuration for ASTM D-4255 Rail Shear Test, Method A

Figure 4-12 Test Specimen Configuration for SACMA SRM-1 Compression Test

Some of the test methods referenced

5. How do I know whether the composite has failed?

R0031

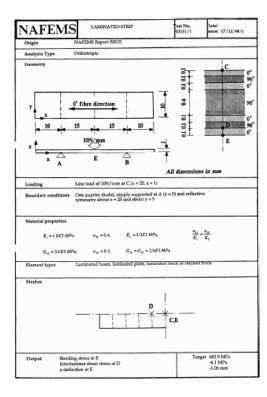
Basic First Ply failure theories NAFEMS COMPOSITE BENCHMARKS Issue 2

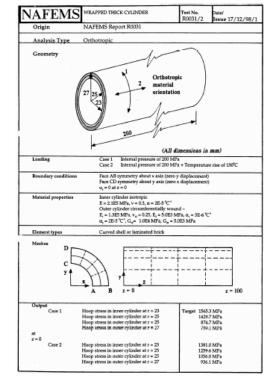
TEST 1 - Laminated strip under three-point bending;

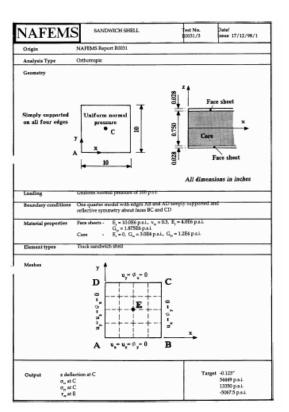
- TEST 2 Wrapped thick cylinder under pressure and thermal loading;
- TEST 3 Three-layer sandwich shell under normal pressure loading.

The purpose of these tests is to demonstrate that the program can carry out an effective

composite analysis and :-


- a) accurately predict displacements;
- b) recover meaningful direct stresses;
- c) recover meaningful interlaminar shear stresses;
- using flat laminated plate, brick, curved shell and thick sandwich shell elements





5. How do I know whether the composite has failed?

Basic First Ply failure theories

Introductory Composites FE Analysis Webinar

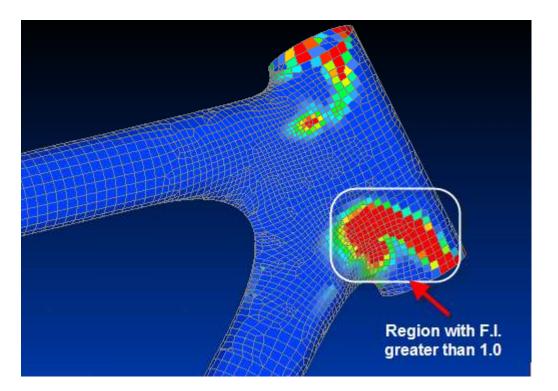
Agenda

4. How good is my FEA idealization?

The importance of fiber orientation, draping and thickness effects.

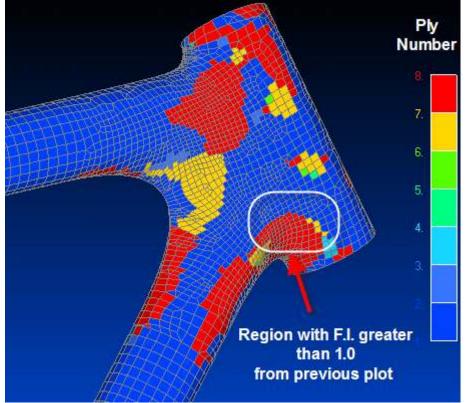
5. How do I know whether the composite has failed?

Basic First Ply failure theories


6. How do I organize my results, where do I start looking?

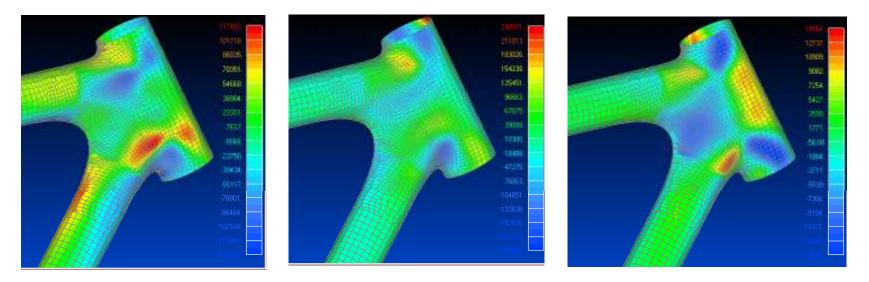
Failure indices, Strength ratios.

Failure indices, Strength ratios.


Identify regions where F.I. shows failure in the layup

NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards

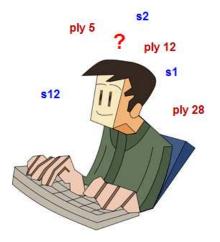
Composites E-Learning Course V1.0 Page 101


Identify which plies are failing in the layup in that region

NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards

Composites E-Learning Course

- Review Direct X, Direct Y and Shear XY ply stresses in the individual ply
- Assess major mode of failure
- Assess coupling through plies
- Redesign if required



Various stress sorting and filtering schemes are available dependent on solver and post processor used

It is important to get familiar with these

Use contour plots and any specific ply mapping tools

The quantity of data can be immense

The Failure Index is a quadratic term, it does not scale linearly with stress level

Failure is when F.I \geq 1.0

$$\left(\frac{1}{x_t} - \frac{1}{x_c}\right)\sigma_1 + \left(\frac{1}{y_t} - \frac{1}{y_c}\right)\sigma_2 + \frac{\sigma_1^2}{x_t x_c} + \frac{\sigma_2^2}{y_t y_c} + \frac{\tau_{12}^2}{s^2} + 2F_{12}\sigma_1\sigma_2 = F.I.$$

For most Failure Criteria the F.I equation can be recast as a Strength Ratio of actual stress/allowable stress with F.I. set to 1.0

Now Strength Ratio scales linearly with stress

Failure is when S.R < 1.0

Acts like a Reserve Factor as used in Europe MS = RF-1.

Introductory Composites FE Analysis Webinar

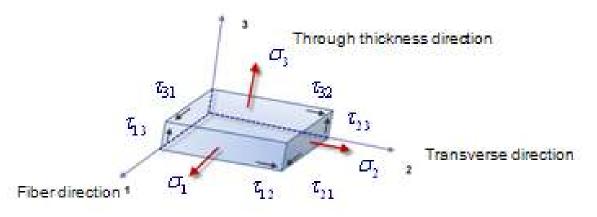
Agenda

7. Through thickness and edge effects such as delamination

Usage of solid and thick shell elements.

8. Advanced failure methods

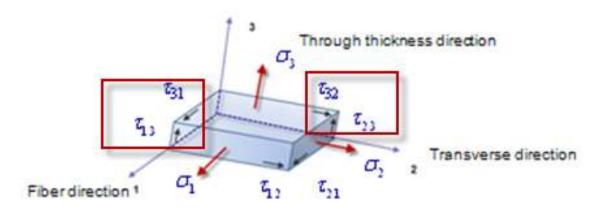
Progressive ply failure, cohesive elements, fracture mechanics methods (VCCT)



7. Through thickness and edge effects such as delamination

Usage of solid and thick shell elements

We have not discussed the through thickness terms which include the interlaminar shears and the direct through thickness stress



7. Through thickness and edge effects such as delamination

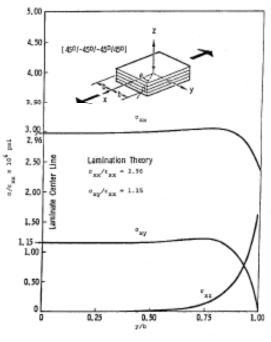
For thin shells in bending the interlaminar shears created by relative stretching between plies are approximated by assuming a simple through shear distribution analogous to classical shear solutions in solid isotropic sections

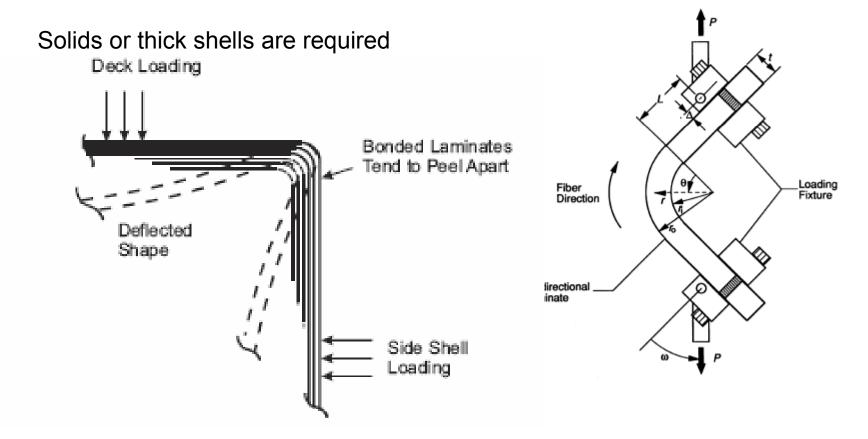
Hence interlaminar shear stresses and strength assessment under simple bending is quite acceptable

7. Through thickness and edge effects such as delamination

However, the thin shell theory assumes that the stresses are continuous within a ply and takes no account of any possible free edge effect where stresses go to zero

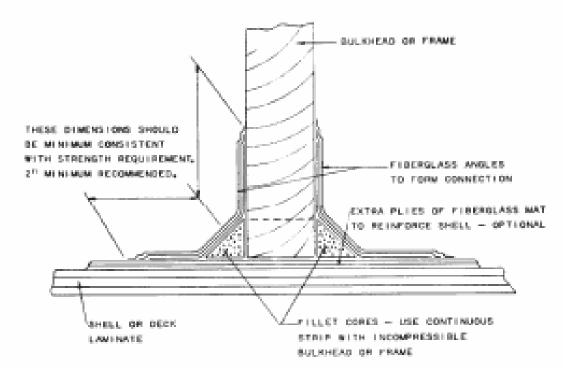
In cases where this may be important it may be necessary to use thick shell or solid elements that can cater for this or to use a micro level element mesh where each ply is modeled with thick shells or solids




FIGURE 4.22. INTERLAMINAR STRESS NORMALIZED WITH RESPECT TO THE APPLIED STRAIN [4.4]

7. Through thickness and edge effects such as delamination

Bending effect such as shown here will promote interlaminar shears and also direct through stresses



7. Through thickness and edge effects such as delamination

This fitting will exhibit peel stresses, through thickness stresses and other stress patterns tending to act in a 3D sense through thickness

For heavy fittings, plane strain may be a useful analysis method

Introductory Composites FE Analysis Webinar

Agenda

7. Through thickness and edge effects such as delamination

Usage of solid and thick shell elements.

8. Advanced failure methods

Progressive ply failure, cohesive elements, fracture mechanics methods (VCCT)

Progressive ply failure, cohesive elements, fracture mechanics methods (VCCT)

We saw the definition of First Ply Failure in a previous section

Progressive Ply Failure takes this further by assuming that the stiffness of the failed ply can be reduced in some manner and the analysis continues

Ply failures can continue to occur with subsequent reduction in stiffness

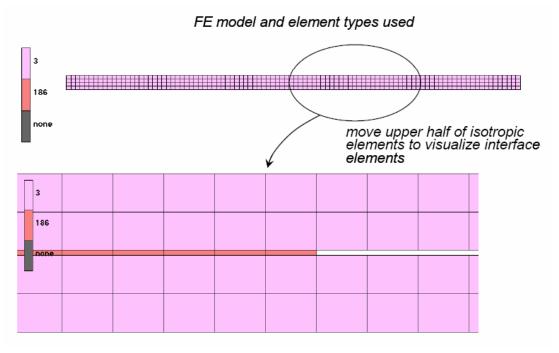
A PPF strategy requires:

A failure criteria which can identify the mode of failure (such as Hashin, Puck, LARC02)

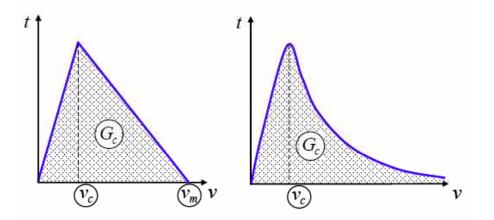
A rational strategy for reducing element stiffness based on the mode of failure seen

Progressive Ply Failure is sensitive to how the stiffness is reduced at each non-linear load step.

If the drop is too great then instabilities can occur, so usually a maximum percentage of stiffness in a particular orthotropic direction is used.


The user can elect to modify this to simulate more ductile composite materials.

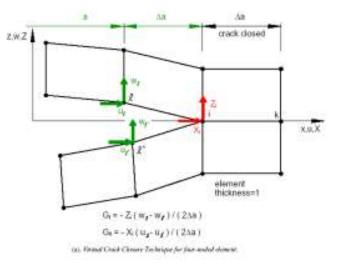
Certain failure modes such as longitudinal tension may be classified as final failure in their own right.



Cohesive Element methods aim to model specific debonding or delamination situations by inserting a layer of special elements between the plies or materials

The behavior of the crack or delamination front is controlled by an energy rate law to allow tuning for different types material (e.g. brittle or ductile)

The actual failure method is still using a stress based approach

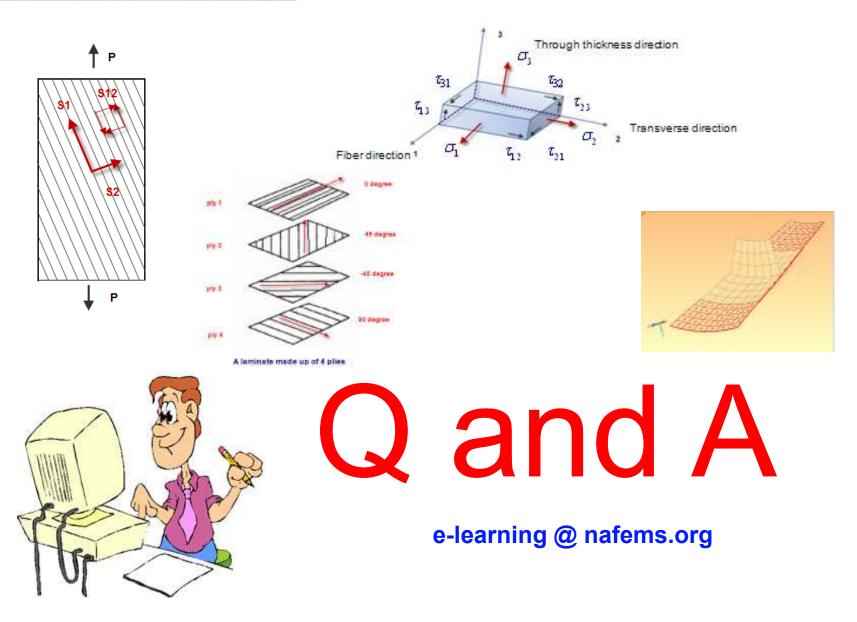

Virtual Crack Closure Technique or VCCT use a fracture mechanics approach to delamination

Originally the method was used for cracks in isotropic materials and it has had great success

More recently it has been used to model delamination

The sketch at right shows a pair of nodes spanning a delamination that has just ooccured.

The displacements of the nodes are known and the force required to oppose the opening action and close the crack back up can be deduced from the stress state


The force and displacements are known, so the energy required to close the crack is known.

This is equal to the energy required to produce the delamination.

The rate of change of energy with respect to the crack growth rate is analogous to the Stress Intensity Factor in isotropic materials.

The strain energy release rate can be compared to the fracture toughness of the material to establish whether a crack will propagate or not. **e**-learning

NAFEMS. The International Association for the Engineering Analysis Community Creating Awareness – Delivering Education and Training – Stimulating Standards

V1.0 Page 119

THE INTERNATIONAL ASSOCIATION FOR THE ENGINEERING ANALYSIS COMMUNITY

Thank you!

matthew.ladzinski@nafems.org