Less Truly is More: Dimension Reduction in Computational Simulations

This presentation was made at the NAFEMS European Conference on Simulation-Based Optimisation held on the 15th of October in London.

Optimisation has become a key ingredient in many engineering disciplines and has experienced rapid growth in recent years due to innovations in optimisation algorithms and techniques, coupled with developments in computer hardware and software capabilities. The growing popularity of optimisation in engineering applications is driven by ever-increasing competition pressure, where optimised products and processes can offer improved performance and cost-effectiveness which would not be possible using traditional design approaches. However, there are still many hurdles to be overcome before optimisation is used routinely for engineering applications.

The NAFEMS European Conference on Simulation-Based Optimisation brings together practitioners and academics from all relevant disciplines to share their knowledge and experience, and discuss problems and challenges, in order to facilitate further improvements in optimisation techniques.

Resource Abstract

Techniques for subspace-based dimension reduction are starting to make their way into engineering workflows. They facilitate powerful inference tailored for both design and manufacturing tasks by identifying linear combinations of parameters that are important with respect to key output quantities of interest. The central idea is to use these methods for empowering more efficient (and faster) optimisation, uncertainty quantification and sensitivity analysis studies, by drastically reducing the number of model evaluations. In this talk, I will provide an overview of such techniques with an exposition of the formulas and code. I will also provide a few industrial examples of how subspace-based dimension reduction can be used to solve salient problems in aeronautics.

Document Details

ReferenceC_Oct_19_Opt_29
AuthorSeshadri. P
LanguageEnglish
TypePresentation
Date 15th October 2019
OrganisationCambridge University
RegionUK

Download


Back to Search Results