Optimization and Manufacturing Feasibility of Stamped Components to Reduce the Vehicle Mass and Improve Performance

This paper was produced for the 2019 NAFEMS World Congress in Quebec Canada

Resource Abstract

Vehicle mass and design cycle reduction has been a very important goal which most of the Automotive OEMs strive to achieve, as this helps in achieving a better fuel efficiency, as well as reducing harmful emissions and material costs. To achieve this, structural optimization needs to be performed very early in the design phase. The current process in the Industry involves designers creating designs, and further, sending them to analysts to validate the design performance. Much of the time, the design fails, and the designers need to modify the design with the analyst’s advice to meet the performance and mass targets. A lot of iterations are carried out to achieve an optimum design and a significant amount of time is lost in this process, due to which lot of components do not go through the optimization process.

This study focusses on performing optimization of stamped components at the concept stage by the designers, which is performed on the CAD and not on the finite element mesh. Topography Optimization is carried out to add beads and improve the stiffness and frequency, and further, Topology and Gauge optimization are done to reduce the mass, by achieving optimum thickness and load path. Optimization involves two stages: 1). Concept level, and 2). Design fine tuning. Topology and Topography are both concept level optimization tools which help in reducing the mass and improving the performance at a concept stage. Gauge optimization is a design fine-tuning tool which helps in fine-tuning the design at a later stage. Various concepts are generated, and the best design is selected. Further, manufacturing feasibility analysis (one-step stamping) is done on the optimized new design, to check for potential manufacturing defects i.e. thinning, thickness variation, etc. The entire study is done in Altair Inspire® which is a design optimization and analysis tool. We end up with significant mass and design cycle reduction.

Document Details

AuthorHoglund. R
Date 18th June 2019
OrganisationAltair Engineering, Inc.


Purchase Download

Order RefNWC_19_8 Download
Non-member Price £5.00 | $6.14 | €5.58

Back to Search Results