This Website is not fully compatible with Internet Explorer.
For a more complete and secure browsing experience please consider using Microsoft Edge, Firefox, or Chrome

Simulations of Viscoelastic Polymer Solution Flows

NAFEMS International Journal of CFD Case Studies

Volume 6, January 2007

ISSN 1462-236X


Simulations of Viscoelastic Polymer Solution Flows

D Niedziela, A Latz and O Iliev
Fraunhofer Institute for Industrial Mathematics (ITWM), Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany.

https://doi.org/10.59972/d8hd7bkp

Keywords: Fluid-Structure-Interaction, Comparison, Control Volume Technique, Euler Lagrange Coupling, Airbag Deployment, Out-of-Position Load Case, LS-DYNA

 


Introduction

Many natural and synthetic fluids are viscoelastic materials i.e. the stress at a certain fluid particle depends upon the history of the deformation experienced by that particle. Polymer melts and most polymer solutions are examples of such liquids. Simulation of the flow of these fluids is therefore of great interest for the plastic industry. Viscoelastic fluids are examples of non - Newtonian fluids. While the Newtonian fluids are characterised by a constant viscosity (i.e., constant ratio between shear stress and the rate of strain), the non-Newtonian fluids require more complicated constitutive relations in order to close the governing system of equations...

References

[1] M.Doi, S.F.Edwards, The Theory of Polymer Dynamics, Oxford University Press, New York, (1986).

[2] E.A.J.F.Peters, Generalization of the deformation field method to simulate advanced reptation models in complex flows, J.Rheol., {\bf 44}, pp 811-829 (2000).

[3] J.H.Ferziger, M.Peric, Computational methods for fluid dynamics (Springer, 1999).

[4] C.A.J.Fletcher, Computational Techniques for Fluid Dynamics, (Springer-Verlag, 1991).

[5] O.Iliev, D.Stoyanov, Multigrid – adaptive local refinement solver for incompressible flows, Berichte des Fraunhofer ITWM, 54 (2003)

[6] P.Wapperom, R.Keunings, Simulation of linear polymer melts in transient complex flow, J.Non-Newtonian Fluid Mech. 95, pp. 67-83. (2000).

[7] P.Wapperom, R.Keunings, Numerical simulations of branched polymer melts in transient complex flow using pom-pom models, J.Non-Newtonian Fluid Mech. 97 pp. 267-281. (2001).

[8] G.Marrucci, F.Greco, G.Ianniruberto, Integral and differential constitutive equations for entangled polymers with simple versions of CCR and force balance on entanglements, Rheol.Acta, 40, pp. 98-103 (2001).

[9] P.Wapperom, R.Keunings, V.Legat, The backward-tracking Lagrangian particle method for transient visco-elastic flows, J.Non-Newtonian Fluid Mech., 91, pp. 273-295 (2000).

[10] S.V.Patankar, Numerical Heat Transfer and Fluid Flow, (Hemisphere, 1980)

[11] M.Perić, R.Kessler and G.Scheuerer, Comparison on finite-volume numerical methods with staggered and collocated grids, Comput. Fluids. 16 pp. 389-403 (1988).

[12] A.A.Samarskii, Theory of difference schemes, (Moskow, 1977, in Russian).

[13] Turek S., Efficient solvers for incompressible flow problems: An algorithmic approach in view of computational aspects, (Springer, 1998/99).

[14] M. Gerritsma, Time dependent Numerical Simulations of a Viscoelastic Fluid on a Staggered Grid, (1996).

[15] D.V.Boger, Viscoelastic flows through contractions, Ann.Rev.Fluid Mech. 19,pp 157-182 (1987).

[16] D.V.Boger, D.U.Hur, R.J.Binnington, Further observations of elastic effects in tubular entry flows, J.Non-Newtonian Fluid Mech. 20, pp 31-49 (1986).

[17] H.Nguyen, D.V.Boger, The kinematics and stability of die entry flows, J.Non-Newtonian Fluid Mech. 5, pp 353-368 (1979).

[18] R.E.Evans, K.Walters, Flow characteristics associated with abrupt changes in flow geometry in the case of highly elastic liquids, J.Non-Newtonian Fluid Mech. 20, pp 11-29 (1986).

[19] S.Nigen, K.Walters, Viscoelastic contraction flows: comparison of axisymmetric and planar configurations, J.Non-Newtonian Fluid Mech. 102, pp 343-359 (2002).

[20] S.A.White, D.G.Baird, The importance of extensional flow properties on planar entry flow patterns of polymer melts, J.Non-Newtonian Fluid Mech. 20, pp 93-102 (1986).

[21] S.A.White,A.D.Gotsis, D.G.Baird, Review of the entry flow problem: experimental and numerical, J.Non-Newtonian Fluid Mech. 24, pp 121-160 (1987).

[22] T.N.Phillips, A.J.Williams, Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method, J.Non-Newtonian Fluid Mech. 87, pp 215-246 (1999).

[23] M.Aboubacar, T.N.Phillips, H.R.Tamaddon-Jahromi, M.F.Webster, .J.Williams, Numerical simulation of contraction flows for Boger fluids using finite volume methods.

[24] M.Aboubacar, H.Matallah, M.F.Webster, Highly elastic solutions for Oldroyd-B and Phan-Thien/Tanner fluids with a finite volume/element method: planar cantraction flows, J.Non-Newtonian Fluid Mech. 103, pp 65-103 (2002).

[25] M.A.Alves, P.J,Oliviera, F.T.Pinho, Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions, J.Non-Newtonian Fluid Mech. 110, pp 45-75 (2003).

[26] R.G.Owens, T.N.Phillips, Computational Rheology, Imperial College Press (July 1, 2002).

[27] E.van Ruymbeke, R.Keunings, V.Stephenne, A.Hangenaars, C.Bailly, Evaluation of reptation models for predicting the linear viscoelastic properties of entangled linear polymers, Macromolecules, 35, pp 2689-2699 (2002).

[28] L.J.Fetters, D.J.Lohse, D.Richter, T.A.Witten, A.Zirkel, Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties, Macromolecules, 27, No.17, pp 4639-4647 (1994).

Cite this paper

D Niedziela, A Latz, O Iliev, Simulations of Viscoelastic Polymer Solution Flows, NAFEMS International Journal of CFD Case Studies, Volume 6, 2007, Pages 15-25, https://doi.org/10.59972/d8hd7bkp

Document Details

ReferenceCFDJ6-2
AuthorsNiedziela. D Latz. A Iliev. O
LanguageEnglish
TypeJournal Article
Date 3rd January 2007
OrganisationFraunhofer

Download

Purchase Download

Order RefCFDJ6-2 Download
Non-member Price £5.00 | $6.29 | €5.84

Back to Previous Page