This Website is not fully compatible with Internet Explorer.
For a more complete and secure browsing experience please consider using Microsoft Edge, Firefox, or Chrome

Numerical Analysis of Material Flow in Continuously Reinforced Extrusion of Profiles

NAFEMS International Journal of CFD Case Studies

Volume 5, January 2006

ISSN 1462-236X

Numerical Analysis of Material Flow in Continuously Reinforced Extrusion of Profiles

Marco Schikorra, Michael Schomäcker and Matthias Kleiner
University of Dortmund, Germany

Keywords: Finite Element Simulation, Extrusion and Reinforcement



The production of continuously reinforced profiles by use of aluminum as base material and a reinforcement made of steel or carbon offers a great potential for modern lightweight constructions. Within this scope, they present the potential for an increase in usage of space frame constructions in automotive or aerospace engineering. But the insertion of reinforcement in the material flow of the extrusion process leads to a significant local perturbation inside of the forming tool: while the velocity of the base material increases due to the increasing press ration the velocity of the reinforcement remains constant at the profiles out-coming velocity. These effect leads in the compound zone to the induction of tensile stresses into the reinforcement which result in failures like cracking during the extrusion process.
By use of a coupled thermo-mechanical finite element simulation with the commercial fe-codes Superform from MSC and HyperXtrude from Altair the velocity fields of an extrusion process with and without reinforcement were calculated and the resulting stress components were analysed. Based on these results, a process optimisation to reduce stresses on the reinforcement has been carried out, for example by a modification of the tool geometry.
The numerical results went along with experiments to verify the calculated failures and the optimised process.


[1] Leitermann, W.; Wätzold, P.; Zengen, K.-H. v.: Der Aluminium-Space-Frame des Audi A2. Motortechnische Zeitschrift. No. 61. Special: Der neue Audi A2, Wiesbaden 2000, pp. 68-79

[2] Lienkamp, M.; Exner, H. E.: Festigkeitsvorhersage bei Langfaserverbundwerkstoffen – Ein Überblick. Zeitschrift Metallkunde. No. 87 / 5, Stuttgart 1996, pp. 365-379

[3] Körner, C.; Schäff, W.; Ottmüller, M.; Singer, R. F.: Carbon Long Fiber Reinforced Magnesium Alloy. Advanced engineering materials. No.6/ 2, Weinheim 2000, pp. 327-337

[4] Kamino, Y., Hirata, Y., Kokusho, T.,Hamaishi, K., Morita, H.,Tabata, I.: Preparation and mechanical properties of Si-C-O long fibre/Alumina Matrix Composite. Journal of Ceramic Society of Japan. Int. Edition. Vol. 103. No. 10. Tokyo 1995, pp. 1021-1025

[5] Bauser, M.; Sauer, G.; Sieger, K.: Strangpressen. Aluminium Fachbuchreihe: Strangpressen. 2nd edition. Aluminium Fachverlag, Düsseldorf 2001.

[6] Kleiner, M.; Klaus, A.: Flexible Fertigung leichter Tragwerke – der neue SFB. Tagungsband zum Industriekolloquium 2003 des SFB 396, Meisenbach Bamberg 2003, pp. 9-38

[7] Schikorra, M., Schomäcker, M., Kleiner, M., Klaus, A.: Numerical analysis of continuously reinforced extrusion process, Annals of wgp, XI/2, 2004 (submitted)

[8] Ruppin, D., Müller, K.: Untersuchung zur Scherreibung beim Strangpressen von Aluminiumwerkstoffen, Aluminium, vol. 58 / 11, 1982, pp 639-645

Cite this paper

Marco Schikorra, Michael Schomäcker, Matthias Kleiner, Numerical Analysis of Material Flow in Continuously Reinforced Extrusion of Profiles, NAFEMS International Journal of CFD Case Studies, Volume 5, 2006, Pages 97-104,

Document Details

AuthorsSchikorra. M Schomäcker. M Kleiner. M
TypeJournal Article
Date 2nd January 2006
OrganisationUniversity of Dortmund


Purchase Download

Order RefCFDJ5-8 Download
Non-member Price £5.00 | $6.38 | €5.88

Back to Previous Page